A Parallel Dynamic Asynchronous Framework for Uncertainty Quantification by Hierarchical Monte Carlo Algorithms
暂无分享,去创建一个
Rosa M. Badia | Ramon Amela | Riccardo Rossi | Riccardo Tosi | R. Badia | R. Tosi | R. Amela | R. Rossi
[1] Jorge Ejarque,et al. Executing linear algebra kernels in heterogeneous distributed infrastructures with PyCOMPSs , 2018 .
[2] Michael B. Giles,et al. Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..
[3] Eddie Kohler,et al. Accelerating MCMC via Parallel Predictive Prefetching , 2014, UAI.
[4] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[5] Benjamin J. Waterhouse,et al. Quasi-Monte Carlo for finance applications , 2008 .
[6] Eugenio Oñate,et al. An Object-oriented Environment for Developing Finite Element Codes for Multi-disciplinary Applications , 2010 .
[7] Michael B. Giles. Multilevel Monte Carlo methods , 2015, Acta Numerica.
[8] P. Halmos. The Theory of Unbiased Estimation , 1946 .
[9] Geert Lombaert,et al. Multilevel Monte Carlo for uncertainty quantification in structural engineering , 2018, ArXiv.
[10] Riccardo Rossi,et al. Migration of a generic multi-physics framework to HPC environments , 2013 .
[11] Thomas A. Zang,et al. Stochastic approaches to uncertainty quantification in CFD simulations , 2005, Numerical Algorithms.
[12] Gene H. Golub,et al. Algorithms for Computing the Sample Variance: Analysis and Recommendations , 1983 .
[13] Pénélope Leyland,et al. A Continuation Multi Level Monte Carlo (C-MLMC) method for uncertainty quantification in compressible inviscid aerodynamics , 2017 .
[14] David Eller,et al. Fast, Unstructured-Mesh Finite-Element Method for Nonlinear Subsonic Flow , 2012 .
[15] Fabio Nobile,et al. Quantifying uncertain system outputs via the multilevel Monte Carlo method - Part I: Central moment estimation , 2020, J. Comput. Phys..
[16] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[17] Mohamed S. Ebeida,et al. Dakota A Multilevel Parallel Object-Oriented Framework for Design Optimization Parameter Estimation Uncertainty Quantification and Sensitivity Analysis: Version 6.12 User?s Manual. , 2020 .
[18] Anthony Brockwell. Parallel Markov chain Monte Carlo Simulation by Pre-Fetching , 2006 .
[19] Catherine E. Powell,et al. An Introduction to Computational Stochastic PDEs , 2014 .
[20] Domenico Talia,et al. ServiceSs: An Interoperable Programming Framework for the Cloud , 2013, Journal of Grid Computing.
[21] G. Golub,et al. Updating formulae and a pairwise algorithm for computing sample variances , 1979 .
[22] Stefan Heinrich,et al. Multilevel Monte Carlo Methods , 2001, LSSC.
[23] R. Tempone,et al. A continuation multilevel Monte Carlo algorithm , 2014, BIT Numerical Mathematics.
[24] Roland Wüchner,et al. A cut finite element method for the solution of the full-potential equation with an embedded wake , 2018, Computational Mechanics.
[25] Johannes O. Royset,et al. Engineering Decisions under Risk Averseness , 2015 .
[26] Bruce R. Ellingwood,et al. Quantifying and communicating uncertainty in seismic risk assessment , 2009 .
[27] Siddhartha Mishra,et al. Sparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conservation laws with random initial data , 2012, Math. Comput..
[28] K. Carlson,et al. Turbulent Flows , 2020, Finite Analytic Method in Flows and Heat Transfer.
[29] Jordi Torres,et al. PyCOMPSs: Parallel computational workflows in Python , 2016, Int. J. High Perform. Comput. Appl..
[30] Barbara I. Wohlmuth,et al. Scheduling Massively Parallel Multigrid for Multilevel Monte Carlo Methods , 2016, SIAM J. Sci. Comput..
[31] Jonas Sukys,et al. Multilevel Monte Carlo Finite Volume Methods for Shallow Water Equations with Uncertain Topography in Multi-dimensions , 2012, SIAM J. Sci. Comput..
[32] K. A. Cliffe,et al. Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients , 2011, Comput. Vis. Sci..
[33] Fabio Nobile,et al. Quantifying uncertain system outputs via the multilevel Monte Carlo method - Part I: Central moment estimation , 2020, J. Comput. Phys..
[34] Jonas Sukys,et al. Multi-level Monte Carlo finite volume methods for nonlinear systems of conservation laws in multi-dimensions , 2012, J. Comput. Phys..
[35] Ray W. Grout,et al. Numerically stable, single-pass, parallel statistics algorithms , 2009, 2009 IEEE International Conference on Cluster Computing and Workshops.
[36] Timothy B. Terriberry,et al. Numerically stable, scalable formulas for parallel and online computation of higher-order multivariate central moments with arbitrary weights , 2016, Comput. Stat..