A Parallel Dynamic Asynchronous Framework for Uncertainty Quantification by Hierarchical Monte Carlo Algorithms

The necessity of dealing with uncertainties is growing in many different fields of science and engineering. Due to the constant development of computational capabilities, current solvers must satisfy both statistical accuracy and computational efficiency. The aim of this work is to introduce an asynchronous framework for Monte Carlo and Multilevel Monte Carlo methods to achieve such a result. The proposed approach presents the same reliability of state of the art techniques, and aims at improving the computational efficiency by adding a new level of parallelism with respect to existing algorithms: between batches, where each batch owns its hierarchy and is independent from the others. Two different numerical problems are considered and solved in a supercomputer to show the behavior of the proposed approach.

[1]  Jorge Ejarque,et al.  Executing linear algebra kernels in heterogeneous distributed infrastructures with PyCOMPSs , 2018 .

[2]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[3]  Eddie Kohler,et al.  Accelerating MCMC via Parallel Predictive Prefetching , 2014, UAI.

[4]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[5]  Benjamin J. Waterhouse,et al.  Quasi-Monte Carlo for finance applications , 2008 .

[6]  Eugenio Oñate,et al.  An Object-oriented Environment for Developing Finite Element Codes for Multi-disciplinary Applications , 2010 .

[7]  Michael B. Giles Multilevel Monte Carlo methods , 2015, Acta Numerica.

[8]  P. Halmos The Theory of Unbiased Estimation , 1946 .

[9]  Geert Lombaert,et al.  Multilevel Monte Carlo for uncertainty quantification in structural engineering , 2018, ArXiv.

[10]  Riccardo Rossi,et al.  Migration of a generic multi-physics framework to HPC environments , 2013 .

[11]  Thomas A. Zang,et al.  Stochastic approaches to uncertainty quantification in CFD simulations , 2005, Numerical Algorithms.

[12]  Gene H. Golub,et al.  Algorithms for Computing the Sample Variance: Analysis and Recommendations , 1983 .

[13]  Pénélope Leyland,et al.  A Continuation Multi Level Monte Carlo (C-MLMC) method for uncertainty quantification in compressible inviscid aerodynamics , 2017 .

[14]  David Eller,et al.  Fast, Unstructured-Mesh Finite-Element Method for Nonlinear Subsonic Flow , 2012 .

[15]  Fabio Nobile,et al.  Quantifying uncertain system outputs via the multilevel Monte Carlo method - Part I: Central moment estimation , 2020, J. Comput. Phys..

[16]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[17]  Mohamed S. Ebeida,et al.  Dakota A Multilevel Parallel Object-Oriented Framework for Design Optimization Parameter Estimation Uncertainty Quantification and Sensitivity Analysis: Version 6.12 User?s Manual. , 2020 .

[18]  Anthony Brockwell Parallel Markov chain Monte Carlo Simulation by Pre-Fetching , 2006 .

[19]  Catherine E. Powell,et al.  An Introduction to Computational Stochastic PDEs , 2014 .

[20]  Domenico Talia,et al.  ServiceSs: An Interoperable Programming Framework for the Cloud , 2013, Journal of Grid Computing.

[21]  G. Golub,et al.  Updating formulae and a pairwise algorithm for computing sample variances , 1979 .

[22]  Stefan Heinrich,et al.  Multilevel Monte Carlo Methods , 2001, LSSC.

[23]  R. Tempone,et al.  A continuation multilevel Monte Carlo algorithm , 2014, BIT Numerical Mathematics.

[24]  Roland Wüchner,et al.  A cut finite element method for the solution of the full-potential equation with an embedded wake , 2018, Computational Mechanics.

[25]  Johannes O. Royset,et al.  Engineering Decisions under Risk Averseness , 2015 .

[26]  Bruce R. Ellingwood,et al.  Quantifying and communicating uncertainty in seismic risk assessment , 2009 .

[27]  Siddhartha Mishra,et al.  Sparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conservation laws with random initial data , 2012, Math. Comput..

[28]  K. Carlson,et al.  Turbulent Flows , 2020, Finite Analytic Method in Flows and Heat Transfer.

[29]  Jordi Torres,et al.  PyCOMPSs: Parallel computational workflows in Python , 2016, Int. J. High Perform. Comput. Appl..

[30]  Barbara I. Wohlmuth,et al.  Scheduling Massively Parallel Multigrid for Multilevel Monte Carlo Methods , 2016, SIAM J. Sci. Comput..

[31]  Jonas Sukys,et al.  Multilevel Monte Carlo Finite Volume Methods for Shallow Water Equations with Uncertain Topography in Multi-dimensions , 2012, SIAM J. Sci. Comput..

[32]  K. A. Cliffe,et al.  Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients , 2011, Comput. Vis. Sci..

[33]  Fabio Nobile,et al.  Quantifying uncertain system outputs via the multilevel Monte Carlo method - Part I: Central moment estimation , 2020, J. Comput. Phys..

[34]  Jonas Sukys,et al.  Multi-level Monte Carlo finite volume methods for nonlinear systems of conservation laws in multi-dimensions , 2012, J. Comput. Phys..

[35]  Ray W. Grout,et al.  Numerically stable, single-pass, parallel statistics algorithms , 2009, 2009 IEEE International Conference on Cluster Computing and Workshops.

[36]  Timothy B. Terriberry,et al.  Numerically stable, scalable formulas for parallel and online computation of higher-order multivariate central moments with arbitrary weights , 2016, Comput. Stat..