Mathematik in den Naturwissenschaften Leipzig Routes to chaos in high-dimensional dynamical systems : a qualitative numerical study

This paper examines the most probable route to chaos a high-dimensional dynamical systems function space (time-delay neural networks) endowed with a probability measure in a computational setting. The most probable route to chaos (relative to the measure we impose on the function space) as the dimension is increased is observed to be a sequence of Neimark‐Sacker bifurcations into chaos. The analysis is composed of the study of an example dynamical system followed by a probabilistic study of the ensemble of dynamical systems from which the example was drawn. A scenario depicting the decoupling of the stable manifolds of the torus leading up to the onset of chaos in high-dimensional dissipative dynamical systems is also presented. c 2006 Elsevier B.V. All rights reserved.

[1]  J C Sprott,et al.  Persistent chaos in high dimensions. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  Alan Edelman,et al.  How many zeros of a random polynomial are real , 1995 .

[3]  James A. Yorke,et al.  Learning about Reality from Observation , 2003, SIAM J. Appl. Dyn. Syst..

[4]  J. C. C. McKinsey Reducible Boolean functions , 1936 .

[5]  George Huitema,et al.  Toward a quasi-periodic bifurcation theory , 1990 .

[6]  H. Swinney,et al.  Onset of Turbulence in a Rotating Fluid , 1975 .

[7]  E. Hopf A mathematical example displaying features of turbulence , 1948 .

[8]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[9]  George Huitema,et al.  Unfolding and bifurcations of quasi-periodic tori. II: Toward a quasi-periodic bifurcation theory , 1990 .

[10]  A. Darbyshire Calculating Lyapunov exponents from a time series , 1994 .

[11]  David Ruelle,et al.  Occurrence of strange Axiom A attractors near quasiperiodic flows on $T^{m}$,$\,m\geq 3$ , 1979 .

[12]  T. N. Stevenson,et al.  Fluid Mechanics , 2021, Nature.

[13]  Kunihiko Kaneko,et al.  Diffusion in Hamiltonian chaos and its size dependence , 1990 .

[14]  Kurt Hornik,et al.  Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks , 1990, Neural Networks.

[15]  David Ruelle,et al.  Characteristic Exponents and Invariant Manifolds in Hilbert Space , 1982 .

[16]  M. Peixoto,et al.  Structural stability on two-dimensional manifolds☆ , 1962 .

[17]  Kunihiko Kaneko,et al.  Clustered motion in symplectic coupled map systems , 1992 .

[18]  Dmitry Dolgopyat,et al.  Partial Hyperbolicity, Lyapunov Exponents and Stable Ergodicity , 2002 .

[19]  M. Shub,et al.  Stable Ergodicity , 2003 .

[20]  Shun-ichi Amari,et al.  Methods of information geometry , 2000 .

[21]  A. Chenciner,et al.  Bifurcations de tores invariants , 1979 .

[22]  Y. Pesin CHARACTERISTIC LYAPUNOV EXPONENTS AND SMOOTH ERGODIC THEORY , 1977 .

[23]  A. Edelman The Probability that a Random Real Gaussian Matrix haskReal Eigenvalues, Related Distributions, and the Circular Law , 1997 .

[24]  Gerald P. Dwyer,et al.  Portable Random Number Generators , 1999 .

[25]  U. Frisch Turbulence: The Legacy of A. N. Kolmogorov , 1996 .

[26]  Ricardo Mañé,et al.  A proof of the C1 stability conjecture , 1987 .

[27]  I. Shimada,et al.  A Numerical Approach to Ergodic Problem of Dissipative Dynamical Systems , 1979 .

[28]  Firdaus E. Udwadia,et al.  An efficient QR based method for the computation of Lyapunov exponents , 1997 .

[29]  G. Benettin,et al.  Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; A method for computing all of them. Part 2: Numerical application , 1980 .

[30]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[31]  Desmond J. Higham,et al.  Error analysis of QR algorithms for computing Lyapunov exponents , 2001 .

[32]  H. Chaté,et al.  Transition to turbulence via spatio-temporal intermittency. , 1987, Physical review letters.

[33]  G. Iooss,et al.  Quasi-genericity of bifurcations to high dimensional invariant tori for maps , 1988 .

[34]  Harry L. Swinney,et al.  Characterization of hydrodynamic strange attractors , 1986 .

[35]  Ulrich Parlitz,et al.  Comparison of Different Methods for Computing Lyapunov Exponents , 1990 .

[36]  L. Dieci,et al.  Computation of a few Lyapunov exponents for continuous and discrete dynamical systems , 1995 .

[37]  正人 木村 Max-Planck-Institute for Mathematics in the Sciences(海外,ラボラトリーズ) , 2001 .

[38]  A. Katok Lyapunov exponents, entropy and periodic orbits for diffeomorphisms , 1980 .

[39]  Julien Clinton Sprott,et al.  Probability of Local Bifurcation Type from a Fixed Point: A Random Matrix Perspective , 2005, nlin/0510060.

[40]  J. Eckmann Roads to turbulence in dissipative dynamical systems , 1981 .

[41]  G. Benettin,et al.  Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: Theory , 1980 .

[42]  B. Cessac,et al.  CONTROL OF THE TRANSITION TO CHAOS IN NEURAL NETWORKS WITH RANDOM CONNECTIVITY , 1993 .

[43]  G. B. Huitema,et al.  Unfolding and bifurcations of quasi-periodic tori. I: Unfolding of quasi-periodic tori , 1990 .

[44]  George Huitema,et al.  Quasi-periodic motions in families of dynamical systems , 1996 .

[45]  D. J. Albers,et al.  Routes to Chaos in Neural Networks with Random Weights , 1998 .

[46]  D. J. Albers,et al.  Structural stability and hyperbolicity violation in high-dimensional dynamical systems , 2004 .

[47]  Vladimir Igorevich Arnold,et al.  Geometrical Methods in the Theory of Ordinary Differential Equations , 1983 .

[48]  George Huitema,et al.  Unfoldings and Bifurcations of Quasi-Periodic Tori , 1990 .

[49]  Floris Takens,et al.  Bifurcations and stability of families of diffeomorphisms , 1983 .

[50]  B. Cessac,et al.  Mean-field equations, bifurcation map and route to chaos in discrete time neural networks , 1994 .

[51]  Elisangela Ferretti Manffra,et al.  Properties of systems with time delayed feedback , 2002 .

[52]  H Broer,et al.  Coupled Hopf-bifurcations : Persistent examples of n-quasiperiodicity determined by families of 3-jets , 2003 .

[53]  J. Rees Prevalence , 2005, BMJ : British Medical Journal.

[54]  W. Langford,et al.  CONJECTURES ON THE ROUTES TO TURBULENCE VIA BIFURCATIONS , 1980 .

[55]  J. Sprott Chaos and time-series analysis , 2001 .

[56]  R. Gencay,et al.  An algorithm for the n Lyapunov exponents of an n -dimensional unknown dynamical system , 1992 .

[57]  B. Cessac,et al.  On bifurcations and chaos in random neural networks , 1994 .

[58]  Jacob Palis,et al.  Vector fields generate few diffeomorphisms , 1974 .

[59]  Sommers,et al.  Chaos in random neural networks. , 1988, Physical review letters.

[60]  R. Russell,et al.  On the Compuation of Lyapunov Exponents for Continuous Dynamical Systems , 1997 .

[61]  L. Barreira,et al.  Lyapunov Exponents and Smooth Ergodic Theory , 2002 .

[62]  F. Takens,et al.  On the nature of turbulence , 1971 .

[63]  R. Robinson,et al.  Structural stability of C1 diffeomorphisms , 1976 .

[64]  J. Robbin A structural stability theorem , 1971 .

[65]  G. Iooss,et al.  Topics in bifurcation theory and applications , 1999 .

[66]  J. A. Stewart,et al.  Nonlinear Time Series Analysis , 2015 .

[67]  F. Takens,et al.  Occurrence of strange AxiomA attractors near quasi periodic flows onTm,m≧3 , 1978 .