An improved distance-based relevance feedback strategy for image retrieval

Most CBIR (content based image retrieval) systems use relevance feedback as a mechanism to improve retrieval results. NN (nearest neighbor) approaches provide an efficient method to compute relevance scores, by using estimated densities of relevant and non-relevant samples in a particular feature space. In this paper, particularities of the CBIR problem are exploited to propose an improved relevance feedback algorithm based on the NN approach. The resulting method has been tested in a number of different situations and compared to the standard NN approach and other existing relevance feedback mechanisms. Experimental results evidence significant improvements in most cases.

[1]  Michael J. Swain,et al.  Color indexing , 1991, International Journal of Computer Vision.

[2]  Raimondo Schettini,et al.  Content-based similarity retrieval of trademarks using relevance feedback , 2001, Pattern Recognit..

[3]  Thomas S. Huang,et al.  Relevance feedback in image retrieval: A comprehensive review , 2003, Multimedia Systems.

[4]  Hong Chang,et al.  Kernel-based distance metric learning for content-based image retrieval , 2007, Image Vis. Comput..

[5]  Esther de Ves,et al.  A relevance feedback CBIR algorithm based on fuzzy sets , 2008, Signal Process. Image Commun..

[6]  Guillermo Ayala,et al.  A novel Bayesian framework for relevance feedback in image content-based retrieval systems , 2006, Pattern Recognit..

[7]  Thomas S. Huang,et al.  One-class SVM for learning in image retrieval , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[8]  David G. Stork,et al.  Pattern Classification , 1973 .

[9]  Mohan M. Trivedi,et al.  Segmentation of a high-resolution urban scene using texture operators , 1984, Comput. Vis. Graph. Image Process..

[10]  Xuelong Li,et al.  Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Erkki Oja,et al.  PicSOM-self-organizing image retrieval with MPEG-7 content descriptors , 2002, IEEE Trans. Neural Networks.

[12]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Fabio Roli,et al.  Instance-Based Relevance Feedback for Image Retrieval , 2004, NIPS.

[14]  Thomas S. Huang,et al.  Relevance feedback: a power tool for interactive content-based image retrieval , 1998, IEEE Trans. Circuits Syst. Video Technol..

[15]  Edward Y. Chang,et al.  Support vector machine active learning for image retrieval , 2001, MULTIMEDIA '01.

[16]  Ling Guan,et al.  Application of Laplacian Mixture Model to Image and Video Retrieval , 2007, IEEE Transactions on Multimedia.

[17]  Pierre Soille,et al.  Morphological Image Analysis: Principles and Applications , 2003 .

[18]  Guillermo Ayala,et al.  Spatial Size Distributions: Applications to Shape and Texture Analysis , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Claudio Gutierrez,et al.  Survey of graph database models , 2008, CSUR.

[20]  James Ze Wang,et al.  Image retrieval: Ideas, influences, and trends of the new age , 2008, CSUR.

[21]  Esther de Ves,et al.  Applying logistic regression to relevance feedback in image retrieval systems , 2007, Pattern Recognit..

[22]  Ian Burns,et al.  Measuring texture classification algorithms , 1997, Pattern Recognit. Lett..

[23]  Francesc J. Ferri,et al.  A naive relevance feedback model for content-based image retrieval using multiple similarity measures , 2010, Pattern Recognit..

[24]  Giorgio Giacinto,et al.  Nearest-prototype relevance feedback for content based image retrieval , 2004, ICPR 2004.

[25]  Shaoping Ma,et al.  Relevance feedback in content-based image retrieval: Bayesian framework, feature subspaces, and progressive learning , 2003, IEEE Trans. Image Process..

[26]  E. Dougherty,et al.  Gray-scale morphological granulometric texture classification , 1994 .

[27]  Joemon M. Jose,et al.  Evidence combination for multi-point query learning in content-based image retrieval , 2004, IEEE Sixth International Symposium on Multimedia Software Engineering.

[28]  Francesc J. Ferri,et al.  Interactive Image Retrieval Using Smoothed Nearest Neighbor Estimates , 2010, SSPR/SPR.

[29]  Giorgio Giacinto,et al.  A nearest-neighbor approach to relevance feedback in content based image retrieval , 2007, CIVR '07.

[30]  Nicu Sebe,et al.  Content-based multimedia information retrieval: State of the art and challenges , 2006, TOMCCAP.

[31]  Belur V. Dasarathy,et al.  Nearest neighbor (NN) norms: NN pattern classification techniques , 1991 .

[32]  Raimondo Schettini,et al.  A relevance feedback mechanism for content-based image retrieval , 1999, Inf. Process. Manag..

[33]  Jake K. Aggarwal,et al.  Combining structure, color and texture for image retrieval: A performance evaluation , 2002, Object recognition supported by user interaction for service robots.

[34]  Trevor Darrell,et al.  Nearest-Neighbor Methods in Learning and Vision: Theory and Practice (Neural Information Processing) , 2006 .

[35]  Ling Guan,et al.  An interactive approach for CBIR using a network of radial basis functions , 2004, IEEE Transactions on Multimedia.

[36]  Jiawei Han,et al.  Learning a Maximum Margin Subspace for Image Retrieval , 2008, IEEE Transactions on Knowledge and Data Engineering.

[37]  Thomas S. Huang,et al.  Small sample learning during multimedia retrieval using BiasMap , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[38]  Wei Liu,et al.  Learning Distance Metrics with Contextual Constraints for Image Retrieval , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[39]  Fabio Roli,et al.  Bayesian relevance feedback for content-based image retrieval , 2004, Pattern Recognit..

[40]  S. García,et al.  An Extension on "Statistical Comparisons of Classifiers over Multiple Data Sets" for all Pairwise Comparisons , 2008 .

[41]  Bart Thomee,et al.  Interactive search in image retrieval: a survey , 2012, International Journal of Multimedia Information Retrieval.

[42]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[43]  Rama Chellappa,et al.  Classification of textures using Gaussian Markov random fields , 1985, IEEE Trans. Acoust. Speech Signal Process..

[44]  Christos Faloutsos,et al.  MindReader: Querying Databases Through Multiple Examples , 1998, VLDB.

[45]  Jing Peng,et al.  Improving image retrieval performance by inter-query learning with one-class support vector machines , 2004, Neural Computing & Applications.