Monte Carlo approximation of likelihood function in spatial GLMMs through an empirical Bayes method
暂无分享,去创建一个
[1] O. F. Christensen. Monte Carlo Maximum Likelihood in Model-Based Geostatistics , 2004 .
[2] Firoozeh Rivaz,et al. Empirical Bayes spatial prediction using a Monte Carlo EM algorithm , 2009, Stat. Methods Appl..
[3] Øivind Skare,et al. Pairwise likelihood inference in spatial generalized linear mixed models , 2005, Comput. Stat. Data Anal..
[4] Majid Jafari Khaledi,et al. Non-Gaussian modeling of spatial data using scale mixing of a unified skew Gaussian process , 2013, J. Multivar. Anal..
[5] Anthony Y. C. Kuk. Automatic choice of driving values in Monte Carlo likelihood approximation via posterior simulations , 2003, Stat. Comput..
[6] P. Diggle,et al. Model‐based geostatistics , 2007 .
[7] Tsai-Hung Fan,et al. Bayesian analysis of multivariate t linear mixed models using a combination of IBF and Gibbs samplers , 2012, J. Multivar. Anal..
[8] J. Berger,et al. Objective Bayesian Analysis of Spatially Correlated Data , 2001 .
[9] Hao Zhang. Optimal Interpolation and the Appropriateness of Cross-Validating Variogram in Spatial Generalized Linear Mixed Models , 2003 .
[10] T. C. Haas,et al. Model-based geostatistics - Discussion , 1998 .
[11] M. J. Khaledi,et al. Bayesian spatial prediction of skew and censored data via a hybrid algorithm , 2015 .
[12] G. Tian,et al. A NONITERATIVE SAMPLING METHOD FOR COMPUTING POSTERIORS IN THE STRUCTURE OF EM-TYPE ALGORITHMS , 2003 .
[13] D. Rubin. Using the SIR algorithm to simulate posterior distributions , 1988 .
[14] Anthony Y. C. Kuk,et al. Monte Carlo approximation through Gibbs output in generalized linear mixed models , 2005 .
[15] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[16] Gareth O. Roberts,et al. Robust Markov chain Monte Carlo Methods for Spatial Generalized Linear Mixed Models , 2006 .
[17] R. Waagepetersen,et al. Bayesian Prediction of Spatial Count Data Using Generalized Linear Mixed Models , 2002, Biometrics.
[18] S. T. Boris Choy,et al. Nonignorable dropout models for longitudinal binary data with random effects: An application of Monte Carlo approximation through the Gibbs output , 2009, Comput. Stat. Data Anal..
[19] H. Rue,et al. Approximate Bayesian Inference in Spatial Generalized Linear Mixed Models , 2008 .
[20] Hao Zhang. On Estimation and Prediction for Spatial Generalized Linear Mixed Models , 2002, Biometrics.
[21] G. Tian,et al. Bayesian Missing Data Problems: EM, Data Augmentation and Noniterative Computation , 2009 .
[22] P. Donnelly,et al. Inference in molecular population genetics , 2000 .