Probing Ferroic States in Oxide Thin Films Using Optical Second Harmonic Generation

Forthcoming low-energy consumption oxide electronics rely on the deterministic control of ferroelectric and multiferroic domain states at the nanoscale. In this review, we address the recent progress in the field of investigation of ferroic order in thin films and heterostructures, with a focus on non-invasive optical second harmonic generation (SHG). For more than 50 years, SHG has served as an established technique for probing ferroic order in bulk materials. Here, we will survey the specific new aspects introduced to SHG investigation of ferroelectrics and multiferroics by working with thin film structures. We show how SHG can probe complex ferroic domain patterns non-invasively and even if the lateral domain size is below the optical resolution limit or buried beneath an otherwise impenetrable cap layer. We emphasize the potential of SHG to distinguish contributions from individual (multi-) ferroic films or interfaces buried in a device or multilayer architecture. Special attention is given to monitoring switching events in buried ferroic domain- and domain-wall distributions by SHG, thus opening new avenues towards the determination of the domain dynamics. Another aspect studied by SHG is the role of strain. We will finally show that by integrating SHG into the ongoing thin film deposition process, we can monitor the emergence of ferroic order and properties in situ, while they emerge during growth. Our review closes with an outlook, emphasizing the present underrepresentation of ferroic switching dynamics in the study of ferroic oxide heterostructures.

[1]  M. Fiebig,et al.  Strain-induced coupling of electrical polarization and structural defects in SrMnO3 films. , 2015, Nature nanotechnology.

[2]  J. Büchi,et al.  Reversible optical switching of antiferromagnetism in TbMnO3 , 2016, Nature Photonics.

[3]  Shen,et al.  General considerations on optical second-harmonic generation from surfaces and interfaces. , 1986, Physical review. B, Condensed matter.

[4]  B. Noheda,et al.  Thickness scaling of ferroelastic domains in PbTiO3 films on DyScO3 , 2013 .

[5]  Junling Wang Origin of the uniaxial magnetic anisotropy in La0.7Sr0.3MnO3on stripe-domain BiFeO3 , 2013 .

[6]  Christopher T. Nelson,et al.  Emergent chirality in the electric polarization texture of titanate superlattices , 2018, Proceedings of the National Academy of Sciences.

[7]  S. Fusil,et al.  Multi-stimuli manipulation of antiferromagnetic domains assessed by second-harmonic imaging. , 2017, Nature materials.

[8]  M. Fiebig,et al.  Functional ferroic heterostructures with tunable integral symmetry , 2014, Nature Communications.

[9]  Chan-Ho Yang,et al.  Ferroelectric domain states of a tetragonal BiFeO3 thin film investigated by second harmonic generation microscopy , 2017, Nanoscale Research Letters.

[10]  M. Fiebig,et al.  Magnetoelectric Force Microscopy on Antiferromagnetic 180∘ Domains in Cr2O3 , 2017, Materials.

[11]  J. Junquera,et al.  Critical thickness for ferroelectricity in perovskite ultrathin films , 2003, Nature.

[12]  A. Tagantsev,et al.  Controlled stripes of ultrafine ferroelectric domains , 2014, Nature Communications.

[13]  E. Tsymbal,et al.  Giant Electroresistance in Ferroelectric Tunnel Junctions , 2005, cond-mat/0502109.

[14]  Philippe Ghosez,et al.  Tailoring the Properties of Artificially Layered Ferroelectric Superlattices , 2007 .

[15]  V. Gopalan,et al.  Enhancement of Ferroelectricity in Strained BaTiO3 Thin Films , 2004, Science.

[16]  M. Bibes,et al.  Multiferroics: towards a magnetoelectric memory. , 2008, Nature materials.

[17]  S. Cheong,et al.  Simultaneous imaging of the ferromagnetic and ferroelectric structure in multiferroic heterostructures , 2014 .

[18]  In-Situ Surface Second-Harmonic Generation Study of Epitaxial Growth of GaAs , 1995 .

[19]  M. Fiebig,et al.  The evolution of multiferroics , 2016 .

[20]  J. Scott,et al.  Ferroelectrics go bananas , 2008 .

[21]  M. Raschke,et al.  Nano-optical imaging and spectroscopy of order, phases, and domains in complex solids , 2012 .

[22]  Sebastiaan van Dijken,et al.  Reversible Electric-Field Driven Magnetic Domain Wall Motion , 2014, 1411.6798.

[23]  R. Ramesh,et al.  Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures , 2003, Science.

[24]  S. Gevorgian,et al.  Ferroelectric thin films: Review of materials, properties, and applications , 2006 .

[25]  A. Scholl,et al.  Probing the evolution of antiferromagnetism in multiferroics , 2010 .

[26]  M. Fiebig,et al.  Domain Wall Architecture in Tetragonal Ferroelectric Thin Films , 2017, Advanced materials.

[27]  J. Triscone,et al.  Built-in voltage in thin ferroelectric PbTiO3 films: the effect of electrostatic boundary conditions , 2016 .

[28]  Pankaj Sharma,et al.  Nonvolatile ferroelectric domain wall memory , 2017, Science Advances.

[29]  J. Ekerdt,et al.  In situ optical second-harmonic-generation monitoring of disilane adsorption and hydrogen desorption during epitaxial growth on Si(001) , 1997 .

[30]  M. Fiebig,et al.  Nanoscale design of polarization in ultrathin ferroelectric heterostructures , 2017, Nature Communications.

[31]  Jacob M. Taylor,et al.  Nanoscale magnetic sensing with an individual electronic spin in diamond , 2008, Nature.

[32]  V. Gopalan,et al.  Large nonlinear optical coefficients in pseudo-tetragonal BiFeO3 thin films , 2013 .

[33]  M. Bibes,et al.  BiFeO3 epitaxial thin films and devices: past, present and future , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[34]  Eric Breckenfeld,et al.  Enhancement of Ferroelectric Curie Temperature in BaTiO3 Films via Strain‐Induced Defect Dipole Alignment , 2014, Advanced materials.

[35]  H. N. Lee,et al.  Nonlinear dynamics of domain-wall propagation in epitaxial ferroelectric thin films. , 2009, Physical review letters.

[36]  M. Guennou,et al.  Order-parameter symmetries of domain walls in ferroelectrics and ferroelastics , 2014, 1401.5671.

[37]  S. van Dijken,et al.  Pattern Transfer and Electric‐Field‐Induced Magnetic Domain Formation in Multiferroic Heterostructures , 2011, Advanced materials.

[38]  W. Sohler,et al.  Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions , 1998 .

[39]  Ady Arie,et al.  Three-dimensional ferroelectric domain visualization by Cerenkov-type second harmonic generation. , 2010, Optics express.

[40]  Electric-field control of exchange bias in multiferroic epitaxial heterostructures. , 2006, Physical review letters.

[41]  Amit Kumar,et al.  Probing Ferroelectrics Using Optical Second Harmonic Generation , 2011 .

[42]  Q. Jin,et al.  Periodic Oscillations of the Surface Magnetization during the Growth of Co Films on Cu(001) , 1998 .

[43]  C. Vaz,et al.  Origin of 90° domain wall pinning in Pb(Zr0.2Ti0.8)O3 heteroepitaxial thin films , 2011 .

[44]  M. Raschke,et al.  Hybrid Tip-Enhanced Nanospectroscopy and Nanoimaging of Monolayer WSe2 with Local Strain Control. , 2016, Nano letters.

[45]  Meilin Liu,et al.  Probing electric field control of magnetism using ferromagnetic resonance , 2015, Nature Communications.

[46]  J. Scott,et al.  Ferroelectric memories , 1997, Science.

[47]  W. Jo,et al.  Epitaxial thin films of multiferroic GaFeO3 on conducting indium tin oxide (001) buffered yttrium-stabilized zirconia (001) by pulsed laser deposition , 2007 .

[48]  O. Auciello,et al.  Ferroelectricity in Ultrathin Perovskite Films , 2004, Science.

[49]  Sergei V. Kalinin,et al.  Conduction at domain walls in oxide multiferroics. , 2009, Nature materials.

[50]  YU Peng,et al.  Domain Control in Multiferroic BiFeO3 through Substrate Vicinality , 2007 .

[51]  L. Marrucci,et al.  Optical second harmonic imaging as a diagnostic tool for monitoring epitaxial oxide thin-film growth , 2015 .

[52]  Andrew M Rappe,et al.  Ferroelectric polarization reversal via successive ferroelastic transitions. , 2015, Nature materials.

[53]  Gerd Marowsky,et al.  Determination of the nonlinear optical susceptibility χ(2) of surface layers by sum and difference frequency generation in reflection and transmission , 1985 .

[54]  N. D. Mathur,et al.  Ferroelectric Control of Spin Polarization , 2010, Science.

[55]  Gunter Lüpke,et al.  Characterization of semiconductor interfaces by second-harmonic generation , 1999 .

[56]  P Yu,et al.  Interface control of bulk ferroelectric polarization , 2012, Proceedings of the National Academy of Sciences.

[57]  M. Dawber,et al.  In situ X-ray diffraction and the evolution of polarization during the growth of ferroelectric superlattices , 2015, Nature Communications.

[58]  M. Fiebig,et al.  Tuning the multiferroic mechanisms of TbMnO3 by epitaxial strain , 2016, Scientific Reports.

[59]  D. Pierce,et al.  Interfacial coupling in multiferroic/ferromagnet heterostructures , 2013, 1304.5394.

[60]  L. Eng,et al.  Optical three-dimensional profiling of charged domain walls in ferroelectrics by Cherenkov second-harmonic generation , 2014 .

[61]  H. Christen,et al.  Strong polarization enhancement in asymmetric three-component ferroelectric superlattices , 2005, Nature.

[62]  Chang-Beom Eom,et al.  Atomic-scale mechanisms of ferroelastic domain-wall-mediated ferroelectric switching , 2013, Nature Communications.

[63]  V. Laukhin,et al.  Exchange biasing and electric polarization with YMnO3 , 2006, cond-mat/0607378.

[64]  J. Grollier,et al.  A ferroelectric memristor. , 2012, Nature materials.

[65]  Joo-Von Kim,et al.  Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer , 2017, Nature.

[66]  S. van Dijken,et al.  Size dependence of domain pattern transfer in multiferroic heterostructures. , 2013, Physical review letters.

[67]  M. Raschke,et al.  Phase coexistence and electric-field control of toroidal order in oxide superlattices. , 2017, Nature materials.

[68]  A. Munkholm,et al.  Observation of nanoscale 180 degrees stripe domains in ferroelectric PbTiO3 thin films. , 2002, Physical review letters.

[69]  Sergei V. Kalinin,et al.  Deterministic control of ferroelastic switching in multiferroic materials. , 2009, Nature nanotechnology.

[70]  J. Bokor,et al.  Interface Engineering of Domain Structures in BiFeO3 Thin Films. , 2017, Nano letters.

[71]  V. Nagarajan,et al.  Thickness dependence of structural and electrical properties in epitaxial lead zirconate titanate films , 1999 .

[72]  G. Stephenson,et al.  Equilibrium and stability of polarization in ultrathin ferroelectric films with ionic surface compensation , 2010, 1101.0298.

[73]  A. Fert,et al.  Tunnel junctions with multiferroic barriers. , 2007, Nature materials.

[74]  Multiferroic domain dynamics in strained strontium titanate. , 2006, Physical review letters.

[75]  Y. Uesu,et al.  Optical Second Harmonic Generation Microscopy as a Tool of Material Diagnosis , 2012 .

[76]  J. Íñiguez,et al.  Negative capacitance in multidomain ferroelectric superlattices , 2016, Nature.

[77]  D. Muller,et al.  Topological Defects in Hexagonal Manganites: Inner Structure and Emergent Electrostatics. , 2017, Nano letters.

[78]  Y. Uesu,et al.  Visibility of inverted domain structures using the second harmonic generation microscope: Comparison of interference and non-interference cases , 2010 .

[79]  S. Pennycook,et al.  Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films , 2015, Science.

[80]  M. Trassin Low energy consumption spintronics using multiferroic heterostructures , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[81]  J. Junquera,et al.  Positive Effect of an Internal Depolarization Field in Ultrathin Epitaxial Ferroelectric Films , 2016 .

[82]  Karin M Rabe,et al.  Magnetic and electric phase control in epitaxial EuTiO(3) from first principles. , 2006, Physical review letters.

[83]  K. Jin,et al.  Evolution of structural distortion in BiFeO3 thin films probed by second-harmonic generation , 2016, Scientific Reports.

[84]  R. Ramesh,et al.  Deterministic switching of ferromagnetism at room temperature using an electric field , 2014, Nature.

[85]  M. Fiebig,et al.  Second-harmonic generation as a tool for studying electronic and magnetic structures of crystals: review , 2005 .

[86]  H. Rogalla,et al.  In-situ monitoring during pulsed laser deposition of complex oxides using reflection high energy electron diffraction under high oxygen pressure , 1997 .

[87]  Davide Maccariello,et al.  Spectral and spatial distribution of polarization at the LaAlO3/SrTiO3 interface , 2011 .

[88]  Nicola A. Spaldin,et al.  The Renaissance of Magnetoelectric Multiferroics , 2005, Science.

[89]  Chang-Beom Eom,et al.  Strain Tuning of Ferroelectric Thin Films , 2007 .

[90]  J. Triscone,et al.  Tuning of the depolarization field and nanodomain structure in ferroelectric thin films. , 2014, Nano letters.

[91]  M. Fiebig,et al.  Magnetoelectric domain control in multiferroic TbMnO3 , 2015, Science.

[92]  Jürgen Schubert,et al.  A strong ferroelectric ferromagnet created by means of spin–lattice coupling , 2010, Nature.

[93]  P. Gao,et al.  Ferroelastic domain switching dynamics under electrical and mechanical excitations , 2014, Nature Communications.

[94]  Ruijuan Xu,et al.  New modalities of strain-control of ferroelectric thin films , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[95]  Asif Islam Khan,et al.  Voltage-controlled ferroelastic switching in Pb(Zr0.2Ti0.8)O3 thin films. , 2015, Nano letters.

[96]  A. Tagantsev,et al.  Room-temperature ferroelectricity in strained SrTiO3 , 2004, Nature.

[97]  A. Tagantsev,et al.  Polarization charge as a reconfigurable quasi-dopant in ferroelectric thin films. , 2015, Nature nanotechnology.

[98]  L. You,et al.  Negative capacitance in a ferroelectric capacitor. , 2014, Nature materials.

[99]  L. Martin,et al.  Nanoscale control of domain architectures in BiFeO3 thin films. , 2009, Nano letters.

[100]  R. Ramesh,et al.  Electric field control of magnetism using BiFeO3-based heterostructures , 2014 .

[101]  Alfred Leitenstorfer,et al.  Nanoscale imaging magnetometry with diamond spins under ambient conditions , 2008, Nature.

[102]  M. Dawber,et al.  In-situ x-ray diffraction study of the growth of highly strained epitaxial BaTiO3 thin films , 2013 .

[103]  Dmitri E. Nikonov,et al.  Electric-field-induced magnetization reversal in a ferromagnet-multiferroic heterostructure. , 2011, Physical review letters.

[104]  A. Gruverman,et al.  Piezoresponse force microscopy studies of switching behavior of ferroelectric capacitors on a 100-ns time scale. , 2008, Physical review letters.

[105]  U. Ebels,et al.  TOPICAL REVIEW: The defining length scales of mesomagnetism: a review , 2002 .

[106]  Sergei V. Kalinin,et al.  Electronic Properties of Isosymmetric Phase Boundaries in Highly Strained Ca‐Doped BiFeO3 , 2014, Advanced materials.

[107]  M. Fiebig,et al.  Probing Ferroelectric Domain Engineering in BiFeO3 Thin Films by Second Harmonic Generation , 2015, Advanced materials.

[108]  Shan X. Wang,et al.  Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. , 2008, Nature materials.

[109]  S. Pennycook,et al.  Resonant electron tunnelling assisted by charged domain walls in multiferroic tunnel junctions. , 2017, Nature nanotechnology.

[110]  Z. H. Chen,et al.  Effect of symmetry mismatch on the domain structure of rhombohedral BiFeO3 thin films , 2015, 1509.03709.

[111]  D. Meier Functional domain walls in multiferroics , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[112]  D. Tenne,et al.  Probing Nanoscale Ferroelectricity by Ultraviolet Raman Spectroscopy , 2006, Science.

[113]  I. Fina,et al.  Untangling Electrostatic and Strain Effects on the Polarization of Ferroelectric Superlattices , 2016 .

[114]  L. Eng,et al.  In Situ 3D Observation of the Domain Wall Dynamics in a Triglycine Sulfate Single Crystal upon Ferroelectric Phase Transition , 2017 .

[115]  T. Fister,et al.  Equilibrium polarization of ultrathin PbTiO3 with surface compensation controlled by oxygen partial pressure. , 2011, Physical review letters.

[116]  E. Matthias,et al.  SHG investigations of the magnetization of thin Ni and Co films on Cu(001) , 1999 .

[117]  Amit Kumar,et al.  Probing mixed tetragonal/rhombohedral-like monoclinic phases in strained bismuth ferrite films by optical second harmonic generation , 2010 .

[118]  D. Muller,et al.  Functional electronic inversion layers at ferroelectric domain walls. , 2017, Nature materials.

[119]  Roman V. Pisarev,et al.  Domain topography of antiferromagnetic Cr2O3 by second‐harmonic generation , 1995 .

[120]  A. Jesacher,et al.  Material characterisation with methods of nonlinear optics , 2018 .

[121]  J. Tetienne,et al.  Magnetometry with nitrogen-vacancy defects in diamond , 2013, Reports on progress in physics. Physical Society.

[122]  M. Fiebig,et al.  Second-Harmonic Near-Field Imaging of Ferroelectric Domain Structure of YMnO3 , 2009 .

[123]  A. Minor,et al.  Observation of polar vortices in oxide superlattices , 2016, Nature.