Finite Record Effects of the Errors-in-Variables Estimator for Linear Dynamic Systems

The frequency domain errors-in-variables (EIV) estimator for linear dynamic systems with periodic excitations is generally formulated as a maximum likelihood (ML) estimator, where the estimated input-output noise (co)variances are used. In this paper, we study the finite record influences on the uncertainty of the ML estimator. Furthermore, we discuss when a significant influence can occur and derive a practical method to circumvent this problem without the need of introducing parametric noise models.

[1]  D. Brillinger Time series - data analysis and theory , 1981, Classics in applied mathematics.

[2]  Brett Ninness,et al.  Maximum Likelihood estimation of state space models from frequency domain data , 2009, 2007 European Control Conference (ECC).

[3]  Piet M. T. Broersen,et al.  Automatic Autocorrelation and Spectral Analysis , 2006 .

[4]  L. Ljung,et al.  Subspace-based multivariable system identification from frequency response data , 1996, IEEE Trans. Autom. Control..

[5]  Gerd Vandersteen,et al.  Frequency Domain Identification Using Non-Parametric Noise Models Estimated from a Small Number of Data Sets , 1997 .

[6]  J. Schoukens,et al.  A maximum likelihood estimator for linear and nonlinear systems-a practical application of estimation techniques in measurement problems , 1988 .

[7]  B. Picinbono Random Signals and Systems , 1993 .

[8]  Rik Pintelon,et al.  Asymptotic Uncertainty of Transfer-Function Estimates Using Nonparametric Noise Models , 2007, IEEE Transactions on Instrumentation and Measurement.

[9]  R. Pintelon,et al.  Asymptotic Uncertainty of Transfer Function Estimates Using Non-Parametric Noise Models , 2007, 2007 IEEE Instrumentation & Measurement Technology Conference IMTC 2007.

[10]  T. Söderström Convergence properties of the generalised least squares identitication method , 1974, Autom..

[11]  Rik Pintelon,et al.  Frequency-Domain, Errors-in-Variables Estimation of Linear Dynamic Systems Using Data From Overlapping Subrecords , 2008, IEEE Transactions on Instrumentation and Measurement.

[12]  Torsten Söderström,et al.  Errors-in-variables methods in system identification , 2018, Autom..

[13]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[14]  D. J. Ewins,et al.  Modal Testing: Theory and Practice , 1984 .

[15]  J. Schoukens,et al.  Frequency domain Errors-In-Variables estimation of linear dynamic systems using data from overlapping sub-records , 2007, 2007 IEEE Instrumentation & Measurement Technology Conference IMTC 2007.

[16]  Gerd Vandersteen,et al.  Nonparametric preprocessing in system identification: A powerful tool , 2009, 2009 European Control Conference (ECC).

[17]  P. Spreij Probability and Measure , 1996 .

[18]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1971 .

[19]  F. Harris On the use of windows for harmonic analysis with the discrete Fourier transform , 1978, Proceedings of the IEEE.

[20]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[21]  Rik Pintelon,et al.  Welch Method Revisited: Nonparametric Power Spectrum Estimation Via Circular Overlap , 2010, IEEE Transactions on Signal Processing.

[22]  Yves Rolain,et al.  Leakage reduction in frequency response function measurements. , 2005, IMTC 2005.

[23]  A. C. Aitken IV.—On Least Squares and Linear Combination of Observations , 1936 .

[24]  J. Schoukens,et al.  Frequency domain system identification using arbitrary signals , 1997, IEEE Trans. Autom. Control..

[25]  C. Sanathanan,et al.  Transfer function synthesis as a ratio of two complex polynomials , 1963 .

[26]  Rik Pintelon,et al.  Identification of continuous-time systems using arbitrary signals , 1997, Autom..

[27]  Rik Pintelon,et al.  System Identification: A Frequency Domain Approach , 2012 .

[28]  Bruce A. Francis,et al.  Control of Uncertain Systems: Modelling, Approximation, and Design , 2006 .