The electronic structure of polyhex carbon tori

The π-orbital electronic structure of polyhex carbon tori constructed from bent individual single-wall nanotubes is investigated within the tight-binding approach. Analytical solutions for tori from nanotubes of arbitrary radius, length, chirality, and twisting angle are derived using simple geometrical and band-structure arguments. Vanishing of the gap between highest occupied and lowest unoccupied molecular orbitals for a torus imposes divisibility by 3 on the indices of chiral and twisting vectors, which translates into one graph-theoretical condition: a metallic polyhex torus is constructible as a leapfrog transformation of a smaller polyhex torus.

[1]  R. Haddon Electronic properties of carbon toroids , 1997, Nature.

[2]  A. Rinzler,et al.  Electronic structure of atomically resolved carbon nanotubes , 1998, Nature.

[3]  S. Altmann,et al.  Band theory of solids : an introduction from the point of view of symmetry , 1994 .

[4]  Fujita,et al.  Electronic structure of graphene tubules based on C60. , 1992, Physical review. B, Condensed matter.

[5]  Ming-Fa Lin,et al.  Electronic structures of chiral carbon toroids , 1998 .

[6]  Seiya Negami,et al.  Uniqueness and faithfulness of embedding of toroidal graphs , 1983, Discret. Math..

[7]  Patrick W. Fowler,et al.  Leapfrog transformations and polyhedra of Clar type , 1994 .

[8]  S. Itoh,et al.  Ab initio geometry and stability of a C120 torus , 1994 .

[9]  Ihara,et al.  Toroidal form of carbon C360. , 1993, Physical review. B, Condensed matter.

[10]  J. Ziman Principles of the Theory of Solids , 1965 .

[11]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[12]  P. Fowler,et al.  Molecular graphs, point groups, and fullerenes , 1992 .

[13]  Patrick W. Fowler,et al.  Eigenvalue spectra of leapfrog polyhedra , 1998 .

[14]  Sawada,et al.  New one-dimensional conductors: Graphitic microtubules. , 1992, Physical review letters.

[15]  Phaedon Avouris,et al.  Rings of single-walled carbon nanotubes , 1999, Nature.

[16]  H. Dai,et al.  Fullerene 'crop circles' , 1997, Nature.

[17]  P. Fowler,et al.  Molecular anapole moments , 1998 .

[18]  Characteristic features of the π-electron states of carbon nanotubes , 1997 .

[19]  Dunlap,et al.  Connecting carbon tubules. , 1992, Physical review. B, Condensed matter.

[20]  Patrick W. Fowler,et al.  Non-bonding orbitals in graphite, carbon tubules, toroids andfullerenes , 1997 .

[21]  Douglas J. Klein,et al.  Symmetry of infinite tubular polymers : application to buckytubes , 1993 .

[22]  L. B. Ebert Science of fullerenes and carbon nanotubes , 1996 .

[23]  D. Chuu,et al.  Persistent currents in toroidal carbon nanotubes , 1998 .

[24]  Carsten Thomassen,et al.  Tilings of the torus and the Klein bottle and vertex-transitive graphs on a fixed surface , 1991 .

[25]  P. Wallace The Band Theory of Graphite , 1947 .

[26]  P. Lambin,et al.  ATOMIC AND ELECTRONIC STRUCTURES OF LARGE AND SMALL CARBON TORI , 1998 .

[27]  J. Heath,et al.  Surprising Superstructures: Rings , 1998 .