A rectangular mixed element method with continuous flux approximation for coupling Stokes and Darcy flows

We construct and analyze herein a mixed element method with continuous flux approximation based on staggered rectangular meshes for solving the model of Stokes equation coupled with Darcy equation with Beavers-Joseph-Saffman interface condition. We prove the inf-sup condition and the approximate solution existence uniquely. The L 2 error estimates are established for both the velocity and pressure. Numerical experiments are given to verify the convergence rate for the problem.

[1]  J. Galvis,et al.  NON-MATCHING MORTAR DISCRETIZATION ANALYSIS FOR THE COUPLING STOKES-DARCY EQUATIONS , 2007 .

[2]  Susanne C. Brenner,et al.  Korn's inequalities for piecewise H1 vector fields , 2003, Math. Comput..

[3]  P. Saffman On the Boundary Condition at the Surface of a Porous Medium , 1971 .

[4]  T. Bratanow Finite element approximations of the Navier-Stokes equations , 1981 .

[5]  T. Arbogast,et al.  A computational method for approximating a Darcy–Stokes system governing a vuggy porous medium , 2007 .

[6]  Jinchao Xu,et al.  Preconditioning techniques for a mixed Stokes/Darcy model in porous media applications , 2009, J. Comput. Appl. Math..

[7]  M. Fortin Old and new finite elements for incompressible flows , 1981 .

[8]  T. Arbogast,et al.  Homogenization of a Darcy–Stokes system modeling vuggy porous media , 2006 .

[9]  Houde Han,et al.  A New Mixed Finite Element Formulation and the MAC Method for the Stokes Equations , 1998 .

[10]  M. Fortin,et al.  Mixed finite elements for second order elliptic problems in three variables , 1987 .

[11]  Houde Han,et al.  A MIXED FINITE ELEMENT METHOD ON A STAGGERED MESH FOR NAVIER-STOKES EQUATIONS * , 2008 .

[12]  M. Fortin,et al.  E cient rectangular mixed fi-nite elements in two and three space variables , 1987 .

[13]  D. Joseph,et al.  Boundary conditions at a naturally permeable wall , 1967, Journal of Fluid Mechanics.

[14]  Hongxing Rui,et al.  A Mass-Conservative Characteristic Finite Element Scheme for Convection-Diffusion Problems , 2008, J. Sci. Comput..

[15]  Todd Arbogast,et al.  A Family of Rectangular Mixed Elements with a Continuous Flux for Second Order Elliptic Problems , 2004, SIAM Journal on Numerical Analysis.

[16]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .

[17]  H. Rui,et al.  A unified stabilized mixed finite element method for coupling Stokes and Darcy flows , 2009 .

[18]  Ivan Yotov,et al.  Coupling Fluid Flow with Porous Media Flow , 2002, SIAM J. Numer. Anal..

[19]  R. A. Nicolaides,et al.  On the stability of bilinear-constant velocity-pressure finite elements , 1984 .

[20]  A. Quarteroni,et al.  Convergence analysis of a subdomain iterative method for the finite element approximation of the coupling of Stokes and Darcy equations , 2004 .

[21]  Béatrice Rivière,et al.  Locally Conservative Coupling of Stokes and Darcy Flows , 2005 .