Analysis and Practical Use of Flexible BiCGStab
暂无分享,去创建一个
[1] Gerard L. G. Sleijpen,et al. Exploiting BiCGstab(ℓ) Strategies to Induce Dimension Reduction , 2010, SIAM J. Sci. Comput..
[2] Barry Smith,et al. Engineering PFLOTRAN for Scalable Performance on Cray XT and IBM BlueGene Architectures , 2010 .
[3] Matthew G. Knepley,et al. Composable Linear Solvers for Multiphysics , 2012, 2012 11th International Symposium on Parallel and Distributed Computing.
[4] Gerard L. G. Sleijpen,et al. Inexact Krylov Subspace Methods for Linear Systems , 2004, SIAM J. Matrix Anal. Appl..
[5] James Demmel,et al. Minimizing communication in sparse matrix solvers , 2009, Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis.
[6] Gene H. Golub,et al. Inexact Preconditioned Conjugate Gradient Method with Inner-Outer Iteration , 1999, SIAM J. Sci. Comput..
[7] Cornelis Vuik,et al. GMRESR: a family of nested GMRES methods , 1994, Numer. Linear Algebra Appl..
[8] Yvan Notay. Flexible Conjugate Gradients , 2000, SIAM J. Sci. Comput..
[9] Hong Zhang,et al. Hierarchical Krylov and nested Krylov methods for extreme-scale computing , 2014, Parallel Comput..
[10] Gerard L. G. Sleijpen,et al. Bi-CGSTAB as an induced dimension reduction method , 2010 .
[11] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[12] J. Vanrosendale,et al. Minimizing inner product data dependencies in conjugate gradient iteration , 1983 .
[13] Valérie Frayssé,et al. Inexact Matrix-Vector Products in Krylov Methods for Solving Linear Systems: A Relaxation Strategy , 2005, SIAM J. Matrix Anal. Appl..
[14] Kurt B. Ferreira,et al. Fault-tolerant linear solvers via selective reliability , 2012, ArXiv.
[15] H. V. D. Vorst,et al. Reducing the effect of global communication in GMRES( m ) and CG on parallel distributed memory computers , 1995 .
[16] John Shalf,et al. Exascale Computing Technology Challenges , 2010, VECPAR.
[17] Daniel B. Szyld,et al. FQMR: A Flexible Quasi-Minimal Residual Method with Inexact Preconditioning , 2001, SIAM J. Sci. Comput..
[18] M. Fortin,et al. An efficient hierarchical preconditioner for quadratic discretizations of finite element problems , 2011, Numer. Linear Algebra Appl..
[19] Anthony T. Chronopoulos,et al. s-step iterative methods for symmetric linear systems , 1989 .
[20] Martin B. van Gijzen,et al. IDR(s): A Family of Simple and Fast Algorithms for Solving Large Nonsymmetric Systems of Linear Equations , 2008, SIAM J. Sci. Comput..
[21] Gene H. Golub,et al. Inner and Outer Iterations for the Chebyshev Algorithm , 1998 .
[22] Sivan Toledo,et al. Quantitative performance modeling of scientific computations and creating locality in numerical algorithms , 1995 .
[23] Wim Vanroose,et al. Hiding Global Communication Latency in the GMRES Algorithm on Massively Parallel Machines , 2013, SIAM J. Sci. Comput..
[24] L.T. Yang,et al. The improved BiCGStab method for large and sparse unsymmetric linear systems on parallel distributed memory architectures , 2002, Fifth International Conference on Algorithms and Architectures for Parallel Processing, 2002. Proceedings..
[25] O. Axelsson,et al. A black box generalized conjugate gradient solver with inner iterations and variable-step preconditioning , 1991 .
[26] Matthew G. Knepley,et al. PETSc Users Manual: Revision 3.11 , 2019 .
[27] R. Fletcher. Conjugate gradient methods for indefinite systems , 1976 .
[28] Valeria Simoncini,et al. Theory of Inexact Krylov Subspace Methods and Applications to Scientific Computing , 2003, SIAM J. Sci. Comput..
[29] Valeria Simoncini,et al. Flexible Inner-Outer Krylov Subspace Methods , 2002, SIAM J. Numer. Anal..
[30] Masha Sosonkina,et al. pARMS : A Package for the Parallel Iterative Solution of General Large Sparse Linear System ∗ User ’ s Guide , 2006 .
[31] Emil M. Constantinescu,et al. Multiphysics simulations , 2013, HiPC 2013.
[32] Yousef Saad,et al. A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..
[33] Gerard L. G. Sleijpen,et al. Flexible and multi-shift induced dimension reduction algorithms for solving large sparse linear systems , 2011 .
[34] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[35] William Gropp,et al. Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries , 1997, SciTools.
[36] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[37] Judith A. Vogel,et al. Flexible BiCG and flexible Bi-CGSTAB for nonsymmetric linear systems , 2007, Appl. Math. Comput..