Quantum annealing initialization of the quantum approximate optimization algorithm

The quantum approximate optimization algorithm (QAOA) is a prospective near-term quantum algorithm due to its modest circuit depth and promising benchmarks. However, an external parameter optimization required in QAOA could become a performance bottleneck. This motivates studies of the optimization landscape and search for heuristic ways of parameter initialization. In this work we visualize the optimization landscape of the QAOA applied to the MaxCut problem on random graphs, demonstrating that random initialization of the QAOA is prone to converging to local minima with sub-optimal performance. We introduce the initialization of QAOA parameters based on the Trotterized quantum annealing (TQA) protocol, parameterized by the Trotter time step. We find that the TQA initialization allows to circumvent the issue of false minima for a broad range of time steps, yielding the same performance as the best result out of an exponentially scaling number of random initializations. Moreover, we demonstrate that the optimal value of the time step coincides with the point of proliferation of Trotter errors in quantum annealing. Our results suggest practical ways of initializing QAOA protocols on near-term quantum devices and reveals new connections between QAOA and quantum annealing.

[1]  Ilya Safro,et al.  Multistart Methods for Quantum Approximate optimization , 2019, 2019 IEEE High Performance Extreme Computing Conference (HPEC).

[2]  H. Nishimori,et al.  Quantum annealing in the transverse Ising model , 1998, cond-mat/9804280.

[3]  U. Schollwoeck The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.

[4]  F. Brandão,et al.  For Fixed Control Parameters the Quantum Approximate Optimization Algorithm's Objective Function Value Concentrates for Typical Instances , 2018, 1812.04170.

[5]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[6]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[7]  Matthias Troyer,et al.  Solving the quantum many-body problem with artificial neural networks , 2016, Science.

[8]  Hartmut Neven,et al.  Optimizing Variational Quantum Algorithms using Pontryagin's Minimum Principle , 2016, ArXiv.

[9]  R. Fletcher,et al.  A New Approach to Variable Metric Algorithms , 1970, Comput. J..

[10]  Seth Lloyd,et al.  Adiabatic Quantum Computation Is Equivalent to Standard Quantum Computation , 2008, SIAM Rev..

[11]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[12]  Aric Hagberg,et al.  Exploring Network Structure, Dynamics, and Function using NetworkX , 2008, Proceedings of the Python in Science Conference.

[13]  Seth Lloyd,et al.  Adiabatic quantum computation is equivalent to standard quantum computation , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[14]  D. Goldfarb A family of variable-metric methods derived by variational means , 1970 .

[15]  J. D. Wong-Campos,et al.  Benchmarking an 11-qubit quantum computer , 2019, Nature Communications.

[16]  Rosenbaum,et al.  Quantum annealing of a disordered magnet , 1999, Science.

[17]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[18]  Jakub Marecek,et al.  Warm-starting quantum optimization , 2021, Quantum.

[19]  Mohit Pandey,et al.  Floquet-Engineering Counterdiabatic Protocols in Quantum Many-Body Systems. , 2019, Physical review letters.

[20]  D. Shanno Conditioning of Quasi-Newton Methods for Function Minimization , 1970 .

[21]  F. Jin,et al.  Benchmarking the quantum approximate optimization algorithm , 2019, Quantum Inf. Process..

[22]  R. Cleve,et al.  Efficient Quantum Algorithms for Simulating Sparse Hamiltonians , 2005, quant-ph/0508139.

[23]  Abdullah Ash-Saki,et al.  Accelerating Quantum Approximate Optimization Algorithm using Machine Learning , 2020, 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE).

[24]  J. G. Muga,et al.  Shortcuts to adiabaticity: Concepts, methods, and applications , 2019, Reviews of Modern Physics.

[25]  M. Sipser,et al.  Quantum Computation by Adiabatic Evolution , 2000, quant-ph/0001106.

[26]  Kunal Sharma,et al.  Connecting ansatz expressibility to gradient magnitudes and barren plateaus , 2021, ArXiv.

[27]  Ryan Babbush,et al.  Barren plateaus in quantum neural network training landscapes , 2018, Nature Communications.

[28]  Prasanna Balaprakash,et al.  Learning to Optimize Variational Quantum Circuits to Solve Combinatorial Problems , 2020, AAAI.

[29]  Giuseppe Carleo,et al.  Classical variational simulation of the Quantum Approximate Optimization Algorithm , 2020, npj Quantum Information.

[30]  D. McMahon Adiabatic Quantum Computation , 2008 .

[31]  Frank Pollmann,et al.  Simulating quantum many-body dynamics on a current digital quantum computer , 2019, npj Quantum Information.

[32]  Leo Zhou,et al.  Quantum Approximate Optimization Algorithm: Performance, Mechanism, and Implementation on Near-Term Devices , 2018, Physical Review X.

[33]  Masoud Mohseni,et al.  Observation of separated dynamics of charge and spin in the Fermi-Hubbard model , 2020, 2010.07965.

[34]  Peter Zoller,et al.  Quantum localization bounds Trotter errors in digital quantum simulation , 2018, Science Advances.

[35]  Tyler Y Takeshita,et al.  Hartree-Fock on a superconducting qubit quantum computer , 2020, Science.

[36]  C. G. Broyden The Convergence of a Class of Double-rank Minimization Algorithms 1. General Considerations , 1970 .

[37]  Gian Giacomo Guerreschi,et al.  QAOA for Max-Cut requires hundreds of qubits for quantum speed-up , 2018, Scientific Reports.

[38]  Patrick J. Coles,et al.  Cost function dependent barren plateaus in shallow parametrized quantum circuits , 2021, Nature Communications.

[39]  Gavin E. Crooks,et al.  Performance of the Quantum Approximate Optimization Algorithm on the Maximum Cut Problem , 2018, 1811.08419.

[40]  M. Rosenblatt Remarks on Some Nonparametric Estimates of a Density Function , 1956 .

[41]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[42]  Stefan Woerner,et al.  The power of quantum neural networks , 2020, Nature Computational Science.

[43]  Peter J. Love,et al.  Bounds on MAXCUT QAOA performance for p>1 , 2020 .

[44]  A. Polkovnikov,et al.  Minimizing irreversible losses in quantum systems by local counterdiabatic driving , 2016, Proceedings of the National Academy of Sciences.

[45]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[46]  D. Bacon,et al.  Quantum approximate optimization of non-planar graph problems on a planar superconducting processor , 2020, Nature Physics.