Gevrey Well-Posedness of the Hyperbolic Prandtl Equations

We study the 2D and 3D Prandtl equations of degenerate hyperbolic type, and establish without any structural assumption the Gevrey well-posedness with Gevrey index ≤ 2. Compared with the classical parabolic Prandtl equations, the loss of the derivatives, caused by the hyperbolic feature coupled with the degeneracy, can’t be overcame by virtue of the classical cancellation mechanism that developed for the parabolic counterpart. Inspired by the abstract Cauchy-Kowalewski theorem and by virtue of the hyperbolic feature, we give in this text a straightforward proof, basing on an elementary L energy estimate. In particular our argument does not involve the cancellation mechanism used efficiently for the classical Prandtl equations.

[1]  G. Raugel,et al.  UNE PERTURBATION HYPERBOLIQUE DES ´ EQUATIONS DE NAVIER-STOKES , 2007 .

[2]  Tong Yang,et al.  Magnetic effects on the solvability of 2D MHD boundary layer equations without resistivity in Sobolev spaces , 2020, 2002.11888.

[3]  R. Racke,et al.  Hyperbolic Navier-Stokes equations II : Global existence of small solutions , 2012 .

[4]  Russel E. Caflisch,et al.  Zero Viscosity Limit for Analytic Solutions of the Navier-Stokes Equation on a Half-Space.¶ II. Construction of the Navier-Stokes Solution , 1998 .

[5]  Tong Yang,et al.  Ill-posedness of the Prandtl equations in Sobolev spaces around a shear flow with general decay , 2016, 1605.00102.

[6]  E Weinan,et al.  BLOWUP OF SOLUTIONS OF THE UNSTEADY PRANDTL'S EQUATION , 1997 .

[7]  Yann Brenier,et al.  On a relaxation approximation of the incompressible Navier-Stokes equations , 2003 .

[8]  Global Existence and the Decay of Solutions to the Prandtl System with Small Analytic Data , 2019, Archive for Rational Mechanics and Analysis.

[9]  Tong Yang,et al.  MHD Boundary Layers Theory in Sobolev Spaces Without Monotonicity I: Well‐Posedness Theory , 2016, Communications on Pure and Applied Mathematics.

[10]  Feng Xie,et al.  Global solvability of 2D MHD boundary layer equations in analytic function spaces , 2021, 2103.08798.

[11]  Ping Zhang,et al.  Global small analytic solutions of MHD boundary layer equations , 2020, 2006.11964.

[12]  V. N. Samokhin,et al.  Mathematical Models in Boundary Layer Theory , 1999 .

[13]  Chao-Jiang Xu,et al.  Long time well-posdness of the Prandtl equations in Sobolev space , 2015, 1511.04850.

[14]  Emmanuel Dormy,et al.  On the ill-posedness of the Prandtl equation , 2009, 0904.0434.

[15]  Zhifei Zhang,et al.  Well-posedness of the linearized Prandtl equation around a non-monotonic shear flow , 2016, Annales de l'Institut Henri Poincaré C, Analyse non linéaire.

[16]  Wei-Xi Li,et al.  Well-posedness of the MHD Boundary Layer System in Gevrey Function Space without Structural Assumption , 2020, SIAM J. Math. Anal..

[17]  Tong Yang,et al.  A well-posedness theory for the Prandtl equations in three space variables , 2014, 1405.5308.

[18]  C. Cattaneo,et al.  Sulla Conduzione Del Calore , 2011 .

[19]  Di Wu,et al.  Gevrey Class Smoothing Effect for the Prandtl Equation , 2015, SIAM J. Math. Anal..

[20]  Tong Yang,et al.  On the Ill-Posedness of the Prandtl Equations in Three-Dimensional Space , 2014, 1412.2843.

[21]  Radjesvarane Alexandre,et al.  Well-posedness of the Prandtl equation in Sobolev spaces , 2012, 1203.5991.

[22]  Tong Yang,et al.  Well‐Posedness in Gevrey Function Space for 3D Prandtl Equations without Structural Assumption , 2020, Communications on Pure and Applied Mathematics.

[23]  Tong Yang,et al.  Well-posedness in Gevrey function spaces for the Prandtl equations with non-degenerate critical points , 2019, Journal of the European Mathematical Society.

[24]  D. Gérard-Varet,et al.  Well-Posedness of the Prandtl Equations Without Any Structural Assumption , 2018, Annals of PDE.

[25]  Louis Nirenberg,et al.  An abstract form of the nonlinear Cauchy-Kowalewski theorem , 1972 .

[26]  Bouthaina Abdelhedi,et al.  Global existence of solutions for hyperbolic Navier-Stokes equations in three space dimensions , 2019, Asymptot. Anal..

[27]  Russel E. Caflisch,et al.  Zero Viscosity Limit for Analytic Solutions, of the Navier-Stokes Equation on a Half-Space.¶I. Existence for Euler and Prandtl Equations , 1998 .

[28]  Nader Masmoudi,et al.  Local‐in‐Time Existence and Uniqueness of Solutions to the Prandtl Equations by Energy Methods , 2012, 1206.3629.

[29]  Nacer Aarach Global well-posedness of 2D Hyperbolic perturbation of the Navier-Stokes system in a thin strip , 2021 .

[30]  Tong Yang,et al.  A note on the ill-posedness of shear flow for the MHD boundary layer equations , 2018, Science China Mathematics.

[31]  K. Asano A note on the abstract Cauchy-Kowalewski theorem , 1988 .

[32]  Nader Masmoudi,et al.  Well-posedness for the Prandtl system without analyticity or monotonicity , 2013 .

[33]  Zhouping Xin,et al.  On the global existence of solutions to the Prandtl's system , 2004 .

[34]  Wei-Xi Li,et al.  Well-posedness in Sobolev spaces of the two-dimensional MHD boundary layer equations without viscosity , 2021, Electronic Research Archive.

[35]  R. Racke,et al.  Hyperbolic Navier-Stokes equations I: Local well-posedness , 2012 .

[36]  Chao-Jiang Xu,et al.  Boundary Layer Analysis for the Fast Horizontal Rotating Fluids , 2016, 1611.04896.

[37]  Ping Zhang,et al.  On the global small solution of 2-D Prandtl system with initial data in the optimal Gevrey class , 2021, 2103.00681.

[38]  Igor Kukavica,et al.  On the Local Well-posedness of the Prandtl and Hydrostatic Euler Equations with Multiple Monotonicity Regions , 2014, SIAM J. Math. Anal..

[39]  Yan Guo,et al.  A note on Prandtl boundary layers , 2010, 1011.0130.

[40]  V. Vicol,et al.  Almost Global Existence for the Prandtl Boundary Layer Equations , 2015, 1502.04319.

[41]  V. Vicol,et al.  Well-posedness of the hydrostatic Navier–Stokes equations , 2018, Analysis & PDE.

[42]  Marius Paicu,et al.  Global hydrostatic approximation of the hyperbolic Navier-Stokes system with small Gevrey class 2 data , 2021, Science China Mathematics.

[43]  Ping Zhang,et al.  Long time well-posdness of Prandtl system with small and analytic initial data , 2014, 1409.1648.