Individual pharmacokinetic parameters quantify the pharmacokinetics of an individual, while population pharmacokinetic parameters quantify population mean kinetics, interindividual kinetic variability, and residual variability, including intraindividual variability and measurement error. Individual pharmacokinetics are estimated by fitting a pharmacokinetic model to individual data. Population pharmacokinetic parameters have traditionally been estimated by doing this separately for each individual, and then combining the individual parameter estimates, the Standard Two Stage (STS) approach. Another approach, NONMEM, appropriately pools data across individuals and is therefore less dependent on individual parameter estimates. This study provides further evidence of NONMEM's validity and usefulness by comparing both approaches on simulated routine-type pharmacokinetic data arising from a monoexponential model. The estimates of population parameters (notably those describing interindividual variability) provided by the STS method are poorer than those provided by NONMEM, especially when there is considerable residual error. Further, NONMEM's estimates of population parameters do not require that the data be restricted to special types of routine data such as those obtained only at steady state, or only at peak or trough, nor do the estimates improve with such data. NONMEM's estimates do improve, however, when a data set is enhanced by the addition of single-observation-per-individual type data. Thus, population parameters can be estimated efficiently from data that simulate real clinical pharmacokinetic conditions.
[1]
Lewis B. Sheiner,et al.
Estimation of population characteristics of pharmacokinetic parameters from routine clinical data
,
1977,
Journal of Pharmacokinetics and Biopharmaceutics.
[2]
P. A. W. Lewis,et al.
A Pseudo-Random Number Generator for the System/360
,
1969,
IBM Syst. J..
[3]
Lewis B. Sheiner,et al.
Evaluation of methods for estimating population pharmacokinetic parameters II. Biexponential model and experimental pharmacokinetic data
,
1981,
Journal of Pharmacokinetics and Biopharmaceutics.
[4]
L B Sheiner,et al.
Forecasting individual pharmacokinetics
,
1979,
Clinical pharmacology and therapeutics.
[5]
M. E. Muller,et al.
A Note on the Generation of Random Normal Deviates
,
1958
.
[6]
Lewis B. Sheiner,et al.
Evaluation of methods for estimating population pharmacokinetic parameters. I. Michaelis-menten model: Routine clinical pharmacokinetic data
,
1980,
Journal of Pharmacokinetics and Biopharmaceutics.