Automatic Local Smoothing for Spectral Density Estimation

This article uses local polynomial techniques to fit Whittle's likelihood for spectral density estimation. Asymptotic sampling properties of the proposed estimators are derived, and adaptation of the proposed estimator to the boundary effect is demonstrated. We show that the Whittle likelihood‐based estimator has advantages over the least‐squares based log‐periodogram. The bandwidth for the Whittle likelihood‐based method is chosen by a simple adjustment of a bandwidth selector proposed in Fan & Gijbels (1995). The effectiveness of the proposed procedure is demonstrated by a few simulated and real numerical examples. Our simulation results support the asymptotic theory that the likelihood based spectral density and log‐spectral density estimators are the most appealing among their peers

[1]  H. T. Davis,et al.  Estimation of the Innovation Variance of a Stationary Time Series , 1968 .

[2]  C. J. Stone,et al.  Consistent Nonparametric Regression , 1977 .

[3]  W. Cleveland Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .

[4]  G. Wahba Automatic Smoothing of the Log Periodogram , 1980 .

[5]  Marcello Pagano,et al.  A Method for Determining Periods in Time Series , 1983 .

[6]  D. B. Preston Spectral Analysis and Time Series , 1983 .

[7]  J. Swanepoel,et al.  The bootstrap applied to power spectral density function estimation , 1986 .

[8]  H. Müller Weighted Local Regression and Kernel Methods for Nonparametric Curve Fitting , 1987 .

[9]  Peter Bloomfield,et al.  DETERMINING THE BANDWIDTH OF A KERNEL SPECTRUM ESTIMATE , 1987 .

[10]  C. Hurvich,et al.  CROSS‐VALIDATORY CHOICE OF A SPECTRUM ESTIMATE AND ITS CONNECTIONS WITH AIC , 1990 .

[11]  Richard A. Davis,et al.  Time Series: Theory and Methods , 2013 .

[12]  Wolfgang Härdle,et al.  On Bootstrapping Kernel Spectral Estimates , 1992 .

[13]  Jianqing Fan Design-adaptive Nonparametric Regression , 1992 .

[14]  Richard A. Davis,et al.  Time Series: Theory and Methods (2nd ed.). , 1992 .

[15]  Joseph P. Romano,et al.  A General Resampling Scheme for Triangular Arrays of $\alpha$-Mixing Random Variables with Application to the Problem of Spectral Density Estimation , 1992 .

[16]  H. Müller,et al.  Weak Convergence and Adaptive Peak Estimation for Spectral Densities , 1992 .

[17]  T. Hastie,et al.  Local Regression: Automatic Kernel Carpentry , 1993 .

[18]  Richard A. Davis,et al.  Time Series: Theory and Methods (2Nd Edn) , 1993 .

[19]  Yudi Pawitan,et al.  Nonparametric Spectral Density Estimation Using Penalized Whittle Likelihood , 1994 .

[20]  Jianqing Fan,et al.  Local polynomial kernel regression for generalized linear models and quasi-likelihood functions , 1995 .

[21]  Young K. Truong,et al.  LOGSPLINE ESTIMATION OF A POSSIBLY MIXED SPECTRAL DISTRIBUTION , 1995 .

[22]  Jianqing Fan,et al.  Data‐Driven Bandwidth Selection in Local Polynomial Fitting: Variable Bandwidth and Spatial Adaptation , 1995 .

[23]  Young K. Truong,et al.  RATE OF CONVERGENCE FOR LOGSPLINE SPECTRAL DENSITY ESTIMATION , 1995 .

[24]  A variation on local linear regression , 1997 .

[25]  Jianqing Fan,et al.  One-step local quasi-likelihood estimation , 1999 .