Recent developments in the physics and applications of self-assembled quantum dots

Due to their fully quantised electronic states and high radiative efficiencies, self-assembled quantum dots have enabled major new advances in both fundamental physics and in a variety of device applications. This article reviews some of these recent advances, in all cases stressing the importance of the underlying electronic properties in enabling the important steps forward. The advances have been achieved for both large ensembles and for individual quantum dots, stressing the versatility of these systems in opening up a variety of new phenomena.

[1]  Mikhail V. Maximov,et al.  InAs-InGaAs quantum dot VCSELs on GaAs substrates emitting at 1.3 µm , 2000 .

[2]  Andrew J. Shields,et al.  Quantum dots as a photon source for passive quantum key encoding , 2002 .

[3]  A. Forchel,et al.  Importance of Auger recombination in InAs 1.3 /spl mu/m quantum dot lasers , 2003 .

[4]  A. G. Cullis,et al.  Strong in-plane polarized intraband absorption in vertically aligned InGaAs/GaAs quantum dots , 2003 .

[5]  E. Costard,et al.  Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity , 1998 .

[6]  A. Stintz,et al.  The influence of quantum-well composition on the performance of quantum dot lasers using InAs-InGaAs dots-in-a-well (DWELL) structures , 2000, IEEE Journal of Quantum Electronics.

[7]  J. A. Barker,et al.  Theoretical analysis of electron-hole alignment in InAs-GaAs quantum dots , 2000 .

[8]  Johann Peter Reithmaier,et al.  ELECTRON AND HOLE G FACTORS AND EXCHANGE INTERACTION FROM STUDIES OF THE EXCITON FINE STRUCTURE IN IN0.60GA0.40AS QUANTUM DOTS , 1999 .

[9]  F. Rossi,et al.  Quantum information processing with semiconductor macroatoms. , 2000, Physical review letters.

[10]  Sanjay Krishna,et al.  High-detectivity, normal-incidence, mid-infrared (λ∼4 μm)InAs/GaAs quantum-dot detector operating at 150 K , 2001 .

[11]  A. Holmes,et al.  Carrier relaxation and quantum decoherence of excited states in self-assembled quantum dots , 2001 .

[12]  A. Zunger,et al.  Compositional and size-dependent spectroscopic shifts in charged self-assembledInxGa1−xAs/GaAsquantum dots , 2003 .

[13]  M. S. Skolnick,et al.  Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots. , 2000, Physical review letters.

[14]  Costas Fotakis,et al.  LASERS, OPTICS, AND OPTOELECTRONICS 2865 Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities , 2001 .

[15]  Andreas Stintz,et al.  High-responsivity, normal-incidence long-wave infrared (λ∼7.2 μm) InAs/In0.15Ga0.85As dots-in-a-well detector , 2002 .

[16]  Rosa Weigand,et al.  Fine Structure of Biexciton Emission in Symmetric and Asymmetric CdSe/ZnSe Single Quantum Dots , 1999 .

[17]  A. A. Gorbunov,et al.  Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots , 2002 .

[18]  M. Hopkinson,et al.  Stacked low-growth-rate InAs quantum dots studied at the atomic level by cross-sectional scanning tunneling microscopy , 2003 .

[19]  M. Hopkinson,et al.  Nature of the Stranski-Krastanow transition during epitaxy of InGaAs on GaAs. , 2001, Physical review letters.

[20]  K. Karrai,et al.  Optical emission from a charge-tunable quantum ring , 2000, Nature.

[21]  Yoshihisa Yamamoto,et al.  Efficient source of single photons: a single quantum dot in a micropost microcavity. , 2002 .

[22]  A. Holmes,et al.  Interplay of Rabi oscillations and quantum interference in semiconductor quantum dots. , 2002, Physical review letters.

[23]  H. Sakaki,et al.  Multidimensional quantum well laser and temperature dependence of its threshold current , 1982 .

[24]  A. Forchel,et al.  Line narrowing in single semiconductor quantum dots: Toward the control of environment effects , 2002 .

[25]  Michael Pepper,et al.  Electrically Driven Single-Photon Source , 2001, Science.

[26]  G. Medeiros-Ribeiro,et al.  Coulomb interactions in small charge-tunable quantum dots: A simple model , 1998 .

[27]  H. Kamada,et al.  Exciton Rabi oscillation in a single quantum dot. , 2001, Physical review letters.

[28]  M. S. Skolnick,et al.  Fine structure of charged and neutral excitons in InAs- Al 0.6 Ga 0.4 As quantum dots , 2002 .

[29]  Nikolai N. Ledentsov,et al.  Quantum dot heterostructures , 1999 .

[30]  Bauer,et al.  Nanometer-scale resolution of strain and interdiffusion in self-assembled InAs/GaAs quantum dots , 2000, Physical review letters.

[31]  Y. Arakawa,et al.  Near-field coherent excitation spectroscopy of InGaAs/GaAs self-assembled quantum dots , 2000 .

[32]  Pawel Hawrylak,et al.  Response spectra from mid- to far-infrared, polarization behaviors, and effects of electron numbers in quantum-dot photodetectors , 2003 .

[33]  Mikhail V. Maximov,et al.  Tuning quantum dot properties by activated phase separation of an InGa(Al)As alloy grown on InAs stressors , 2000 .

[34]  Hsien-Shun Wu,et al.  Low dark current quantum-dot infrared photodetectors with an AlGaAs current blocking layer , 2001 .

[35]  A. Zrenner,et al.  Coherent properties of a two-level system based on a quantum-dot photodiode , 2002, Nature.

[36]  Mikhail V. Maximov,et al.  Complete suppression of filamentation and superior beam quality in quantum-dot lasers , 2003 .

[37]  Peter Michler,et al.  Quantum correlation among photons from a single quantum dot at room temperature , 2000, Nature.

[38]  M. Hopkinson,et al.  Observation of multicharged excitons and biexcitons in a single InGaAs quantum dot , 2001 .

[39]  Young-Soo Kim,et al.  Two-dimensional phase unwrapping using wavelet transform , 2002 .

[40]  Mikhail V. Maximov,et al.  InAs/InGaAs/GaAs quantum dot lasers of 1.3 /spl mu/m range with high (88%) differential efficiency , 2002 .

[41]  Pm Paul Koenraad,et al.  Determination of the shape and indium distribution of low-growth-rate InAs quantum dots by cross-sectional scanning tunneling microscopy , 2002 .

[42]  Y. Arakawa,et al.  EFFICIENT CARRIER RELAXATION MECHANISM IN INGAAS/GAAS SELF-ASSEMBLED QUANTUM DOTS BASED ON THE EXISTENCE OF CONTINUUM STATES , 1999 .

[43]  A. Vasanelli,et al.  Continuous absorption background and decoherence in quantum dots. , 2002, Physical review letters.