Optical properties of plasmonic nanopore arrays prepared by electron beam and colloidal lithography

We present new plasmonic nanopore arrays and their optical properties, in particular the influence from short-range vs. long-range ordering.

[1]  A. Meller,et al.  Plasmonic‐Nanopore Biosensors for Superior Single‐Molecule Detection , 2019, Advanced materials.

[2]  M. G. Manera,et al.  Gold nanoholes fabricated by colloidal lithography: novel insights into nanofabrication, short-range correlation and optical properties. , 2019, Nanoscale.

[3]  Shulabh Gupta Single-order transmission diffraction gratings based on dispersion engineered all-dielectric metasurfaces. , 2016, Journal of the Optical Society of America. A, Optics, image science, and vision.

[4]  C. Dekker,et al.  Lithography-based fabrication of nanopore arrays in freestanding SiN and graphene membranes , 2018, Nanotechnology.

[5]  Lei Zhang,et al.  Enhancement and tunability of Fano resonance in symmetric multilayer metamaterials at optical regime , 2013 .

[6]  Mikael Käll,et al.  Optical Spectroscopy of Nanometric Holes in Thin Gold Films , 2004 .

[7]  V. Tsukruk,et al.  Heterogeneous forward and backward scattering modulation by polymer-infused plasmonic nanohole arrays , 2019, Journal of Materials Chemistry C.

[8]  Mikael Käll,et al.  Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events. , 2005, Journal of the American Chemical Society.

[9]  Vladimir D. Miljković,et al.  Diffraction from arrays of plasmonic nanoparticles with short-range lateral order. , 2012, ACS nano.

[10]  Domenico Pacifici,et al.  Universal optical transmission features in periodic and quasiperiodic hole arrays. , 2008, Optics express.

[11]  Carlos Escobedo,et al.  On-chip nanohole array based sensing: a review. , 2013, Lab on a chip.

[12]  T. Sannomiya,et al.  Ultrathin suspended nanopores with surface plasmon resonance fabricated by combined colloidal lithography and film transfer. , 2014, ACS applied materials & interfaces.

[13]  Alp Artar,et al.  Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes , 2010 .

[14]  D. Görlich,et al.  Reversible Immobilization of Proteins in Sensors and Solid-State Nanopores. , 2018, Small.

[15]  Peter Nordlander,et al.  Optical properties of a nanosized hole in a thin metallic film. , 2008, ACS nano.

[16]  E. S. H. Kang,et al.  Plasmonic fanoholes: on the gradual transition from suppressed to enhanced optical transmission through nanohole arrays in metal films of increasing film thickness , 2019, Optical Materials Express.

[17]  Lei Zhang,et al.  Enhancement of Fano resonance in metal/dielectric/metal metamaterials at optical regime. , 2013, Optics express.

[18]  Sang-Hyun Oh,et al.  Self-assembled plasmonic nanohole arrays. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[19]  T. Gaborski,et al.  Charge- and size-based separation of macromolecules using ultrathin silicon membranes , 2007, Nature.

[20]  B. Kasemo,et al.  Localized and propagating plasmons in metal films with nanoholes. , 2013, Nano letters.

[21]  Konstantins Jefimovs,et al.  Investigation of plasmon resonances in metal films with nanohole arrays for biosensing applications. , 2011, Small.

[22]  Andreas B. Dahlin,et al.  Sensing applications based on plasmonic nanopores: The hole story. , 2015, The Analyst.

[23]  S. Maier,et al.  Geometry dependence of surface plasmon polariton lifetimes in nanohole arrays. , 2010, ACS nano.

[24]  M. G. Manera,et al.  Long- and Short-Range Ordered Gold Nanoholes as Large-Area Optical Transducers in Sensing Applications , 2019, Chemosensors.

[25]  J. W. Menezes,et al.  Large Area Nanohole Arrays for Sensing Fabricated by Interference Lithography , 2019, Sensors.

[26]  T. Ebbesen,et al.  Long vs. short-range orders in random subwavelength hole arrays. , 2012, Optics express.

[27]  Andreas B. Dahlin,et al.  Biosensing using plasmonic nanohole arrays with small, homogenous and tunable aperture diameters. , 2016, The Analyst.

[28]  The effect of holes in the dispersion relation of propagative surface plasmon modes of nanoperforated semitransparent metallic films , 2014 .

[29]  Weihong Tan,et al.  DNA-Functionalized Nanotube Membranes with Single-Base Mismatch Selectivity , 2004, Science.

[30]  Janos Vörös,et al.  Electrochemical plasmonic sensors , 2012, Analytical and Bioanalytical Chemistry.

[31]  Lauren M. Otto,et al.  Dielectrophoresis-Enhanced Plasmonic Sensing with Gold Nanohole Arrays , 2014, Nano letters.

[32]  Duncan S Sutherland,et al.  Enhanced refractive index sensitivity of elevated short-range ordered nanohole arrays in optically thin plasmonic Au films. , 2013, Optics express.

[33]  Ki-Bum Kim,et al.  Recent Progress in Solid‐State Nanopores , 2018, Advanced materials.

[34]  Francesco De Angelis,et al.  Site-selective functionalization of plasmonic nanopores for enhanced fluorescence emission rate and Förster resonance energy transfer , 2018, Nanoscale advances.

[35]  Fredrik Höök,et al.  Locally functionalized short-range ordered nanoplasmonic pores for bioanalytical sensing. , 2010, Analytical chemistry.

[36]  Andreas B. Dahlin,et al.  Plasmonic Nanopores in Metal‐Insulator‐Metal Films , 2014 .

[37]  Borja Sepúlveda,et al.  Nanohole plasmons in optically thin gold films , 2007 .

[38]  Andreas B. Dahlin,et al.  A thermal plasmonic sensor platform: resistive heating of nanohole arrays. , 2014, Nano letters.

[39]  Ji Shi,et al.  Hole-size tuning and sensing performance of hexagonal plasmonic nanohole arrays , 2016 .

[40]  Hans Söderlund,et al.  Antibody-Based Bio-Nanotube Membranes for Enantiomeric Drug Separations , 2002, Science.