Photorefractive Optical Interconnects

A wide range of optical interconnection schemes using photorefractive holograms has been proposed and demonstrated worldwide. This chapter provides an overview of this new technology and discusses some of the highlights achieved and the technical challenges ahead. Optical interconnection can be classified in a variety of ways based on their functionality, architecture, network topology, or other features. The interconnection network can be either fixed or reconfigurable. The transmission medium can be either free-space or guided structures, such as optical fibers or waveguides. The distance involved can range from a few microns for intra-chip gate-to-gate interconnection to several kilometers for machine-to-machine interconnection, and thousands of kilometers in telecommunications. The interconnection can be either one-to-one or one-to-many. The latter can be further classified into nonselective broadcasting, in which the signal from one source is broadcast to all the receivers without any discrimination, versus selective broadcasting, in which the signal from each source is distributed to a few selected receivers. The chapter discusses the properties of photorefractive two-wave mixing, optical phase conjugation in photorefractive materials and interconnections based on passive holographic storage in photorefractive media.

[1]  J. Feinberg,et al.  Phase-conjugating mirror with continuous-wave gain. , 1980, Optics letters.

[2]  Optical-beam steering for fiber array using dynamic holography , 1986 .

[3]  Y. Fainman,et al.  Applications Of Photorefractive Devices For Optical Computing , 1990, Optics & Photonics.

[4]  P Yeh,et al.  2 x 8 photorefractive reconfigurable interconnect with laser diodes. , 1992, Applied optics.

[5]  Peter Günter,et al.  Photorefractive effects and materials , 1988 .

[6]  Jack Feinberg,et al.  11 – Optical Phase Conjugation in Photorefractive Materials , 1983 .

[7]  P. J. van Heerden,et al.  Theory of Optical Information Storage in Solids , 1963 .

[8]  Mark Cronin-Golomb Dynamically programmable self‐aligning optical interconnect with fan‐out and fan‐in using self‐pumped phase conjugation , 1989 .

[9]  John A. Neff,et al.  Major Initiatives For Optical Computing , 1987 .

[10]  Claire Gu,et al.  Crosstalk limited storage capacity of volume holographic memory , 1992, Optical Society of America Annual Meeting.

[11]  Arthur E. T. Chiou,et al.  Reconfigurable Optical Interconnection Using Photorefractive Holograms , 1990, Optics & Photonics.

[12]  W S Rabinovich,et al.  Suppression of photorefractive beam fanning using achromatic gratings. , 1991, Optics letters.

[13]  F. Mok,et al.  Storage of 500 high-resolution holograms in a LiNbO(3) crystal. , 1991, Optics letters.

[14]  J W Goodman,et al.  Optical imaging applied to microelectronic chip-to-chip interconnections. , 1985, Applied optics.

[15]  R W Eason,et al.  Analysis of mutually incoherent beam coupling in BaTiO(3). , 1987, Optics letters.

[16]  S Weiss,et al.  Photorefractive dynamic optical interconnects. , 1988, Applied optics.

[17]  E. Maniloff,et al.  Procedure for recording multiple-exposure holograms with equal diffraction efficiency in photorefractive media. , 1989, Optics letters.

[19]  Marvin B. Klein,et al.  Optimal Properties Of Photorefractive Materials For Optical Data Processing , 1983 .

[20]  P. Yeh,et al.  Beam cleanup using photorefractive two-wave mixing. , 1985, Optics letters.

[21]  D. Psaltis,et al.  Holography in artificial neural networks , 1990, Nature.

[22]  Arthur L. Smirl,et al.  Formation, decay, and erasure of photorefractive gratings written in barium titanate by picosecond pulses , 1989 .

[23]  H. S. Hinton,et al.  Photonic switching fabrics , 1990, IEEE Communications Magazine.

[24]  J. P. Herriau,et al.  Highly efficient diffraction in photorefractive BSO-BGO crystals at large applied fields , 1987 .

[25]  Robert W. Hellwarth,et al.  Generation of time-reversed wave fronts by nonlinear refraction* , 1977 .

[26]  W. J. Burke,et al.  Multiple storage and erasure of fixed holograms in Fe−doped LiNbO3 , 1975 .

[27]  J. Feinberg,et al.  Self-pumped, continuous-wave phase conjugator using internal reflection. , 1982, Optics letters.

[28]  P. Günter,et al.  Optical Processing with Nonlinear Photorefractive Crystals , 1990 .

[29]  Improved electrooptic materials for holographic storage applications , 1971 .

[30]  D A Gregory,et al.  Reconfigurable interconnections using photorefractive holograms. , 1990, Applied optics.

[31]  H. Kogelnik Coupled wave theory for thick hologram gratings , 1969 .

[32]  F.J. Leonberger,et al.  Optical interconnections for VLSI systems , 1984, Proceedings of the IEEE.

[33]  Shmuel Sternklar,et al.  Self Bragg matched beam steering using the double color pumped photorefractive oscillator , 1987 .

[34]  S Y Lee,et al.  Parallel N(4) weighted optical interconnections: comments. , 1988, Applied optics.

[35]  Joseph E. Ford,et al.  Matrix-Tensor Multiplication Using Phase-Coded Optical Correlation , 1990, Optics & Photonics.

[36]  C Gu,et al.  Cross-talk noise in photorefractive interconnection. , 1993, Applied optics.

[37]  Ma,et al.  Introduction, revelation, and evolution of complementary gratings in photorefractive bismuth silicon oxide. , 1990, Physical review. B, Condensed matter.

[38]  P Yeh,et al.  Optical matrix-vector multiplication through four-wave mixing in photorefractive media. , 1987, Optics letters.

[39]  A. Joel On permutation switching networks , 1968 .

[40]  L Hesselink,et al.  Photorefractive integrated-optical switch arrays in LiNbO(3). , 1990, Optics letters.

[41]  F. Micheron,et al.  Electrical Control of Fixation and Erasure of Holographic Patterns in Ferroelectric Materials , 1972 .

[42]  Y Li,et al.  Parallel digital and symbolic optical computation via optical phase conjugation. , 1988, Applied optics.

[43]  G. D. Boyd,et al.  OPTICALLY‐INDUCED REFRACTIVE INDEX INHOMOGENEITIES IN LiNbO3 AND LiTaO3 , 1966 .

[44]  Arif Ghafoor,et al.  Optics and supercomputing , 1989, Proc. IEEE.

[45]  H J Caulfield Parallel N(4) weighted optical interconnections. , 1987, Applied optics.

[46]  J Feinberg,et al.  Fixable complementary gratings in photorefractive BaTiO(3). , 1991, Optics letters.

[47]  M D Ewbank,et al.  Mechanism for photorefractive phase conjugation using incoherent beams. , 1988, Optics letters.

[48]  Amnon Yariv,et al.  Real‐time image processing via four‐wave mixing in a photorefractive medium , 1980 .

[49]  P. Yeh,et al.  Parallel image subtraction using a phase-conjugate Michelson interferometer. , 1986, Optics letters.

[50]  Jack Feinberg,et al.  Asymmetric self-defocusing of an optical beam from the photorefractive effect , 1982 .

[51]  P. Yeh Two-wave mixing in nonlinear media , 1989 .

[52]  Demetri Psaltis,et al.  Fractal Sampling Grids For Holographic Interconnections , 1989, Other Conferences.

[53]  J Shamir,et al.  Massive holographic interconnection networks and their limitations. , 1989, Applied optics.

[54]  B. Fischer,et al.  Double-color-pumped photorefractive oscillator and image color conversion. , 1987, Optics letters.

[55]  P Yeh,et al.  Diffraction efficiency of strong volume holograms. , 1990, Optics letters.

[56]  Amnon Yariv,et al.  Phase conjugate optics and real time holography (A) , 1978 .

[57]  J F Walkup,et al.  Optical quadratic processor using four-wave mixing in BaTiO(3). , 1989, Optics letters.

[58]  Powell,et al.  Picosecond two-beam coupling and polarization rotation by scalar gratings in undoped cadmium telluride at 1.064 microm. , 1991, Physical review. B, Condensed matter.

[59]  Arthur E. T. Chiou,et al.  Photorefractive Nonlinear Optics And Optical Computing , 1989 .

[60]  S. H. Lee,et al.  Incremental recording for photorefractive hologram multiplexing. , 1991, Optics letters.

[61]  H. J. Caulfield,et al.  Optical neural networks , 1989 .

[62]  Amnon Yariv,et al.  Passive phase conjugate mirror based on self-induced oscillation in an optical ring cavity , 1983 .

[63]  F T Yu,et al.  Use of photorefractive fiber in optical interconnections and switching. , 1990, Applied optics.

[64]  Joseph E. Ford,et al.  Application of photorefractive crystals to optical interconnection , 1990, Photonics West - Lasers and Applications in Science and Engineering.

[66]  M. Soskin,et al.  Holographic storage in electrooptic crystals. i. steady state , 1978 .

[67]  B H Soffer,et al.  Hybrid optoelectronic neural networks using a mutually pumped phase-conjugate mirror. , 1991, Optics letters.

[68]  E. Voges,et al.  Integrated-optic devices on LiNbO 3 for optical communication , 1987 .

[69]  Dana Z. Anderson,et al.  Optical novelty filters , 1989 .

[70]  Peter Günter,et al.  Holography, coherent light amplification and optical phase conjugation with photorefractive materials , 1982 .

[71]  S H Lee,et al.  Comparison between optical and electrical interconnects based on power and speed considerations. , 1988, Applied optics.

[72]  D. Psaltis,et al.  Periodically refreshed multiply exposed photorefractive holograms. , 1990, Optics letters.

[73]  J. Joseph,et al.  High-gain, low-noise signal beam amplification in photorefractive BaTiO(3). , 1991, Applied optics.

[74]  S. Bernet,et al.  Spectral hole buming and molecular computing. , 1990, Applied optics.

[75]  A Guha,et al.  Optical interconnections for massively parallel architectures. , 1990, Applied optics.

[76]  B H Soffer,et al.  Optical interconnection method for neural networks using self-pumped phase-conjugate mirrors. , 1991, Optics letters.

[77]  Cauligi S. Raghavendra,et al.  Optical Crossbar Networks , 1987, Computer.

[78]  H Lee,et al.  Cross-talk effects in multiplexed volume holograms. , 1988, Optics letters.

[79]  J. Feinberg,et al.  Continuous-wave self-pumped phase conjugator with wide field of view. , 1983, Optics letters.

[80]  W. Phillips,et al.  Volume Phase Holographic Storage In Ferroelectric Crystals , 1978 .

[81]  J. P. Herriau,et al.  Hologram fixing process at room temperature in photorefractive Bi12SiO20 crystals , 1986 .

[82]  C Warde,et al.  High photorefractive sensitivity in an n-type 45 degrees-cut BaTiO(3) crystal. , 1992, Optics letters.

[83]  D. Miller Optics for low-energy communication inside digital processors: quantum detectors, sources, and modulators as efficient impedance converters. , 1989, Optics letters.

[84]  J. Horner,et al.  Fourier optical signal processors , 1989, Proc. IEEE.

[85]  I. Ledoux,et al.  Two-wave mixing and energy transfer in BaTiO3 application to laser beamsteering , 1984 .

[86]  A Agranat,et al.  Fixing of a photorefractive grating in KTa(1-x)Nb(x)O(3) by cooling through the ferroelectric phase transition. , 1991, Optics letters.

[87]  K. Blotekjaer Limitations on holographic storage capacity of photochromic and photorefractive media. , 1979, Applied optics.

[88]  V. B. Markov,et al.  holographic storage in electrooptic crystals. II. beam coupling—light amplification , 1978 .

[89]  Philip D. Henshaw Configurations Forphotorefractive Laser Beamsteering , 1984, Photonics West - Lasers and Applications in Science and Engineering.

[90]  J. Goodman Optical interconnection for VLSI , 1984 .

[91]  T. F. Boggess,et al.  Picosecond photorefractive beam coupling in GaAs. , 1986, Optics letters.

[92]  D Z Tsang,et al.  One-gigabit per second free-space optical interconnection. , 1990, Applied optics.

[93]  Amnon Yariv,et al.  Coherent oscillation by self‐induced gratings in the photorefractive crystal BaTiO3 , 1982 .

[94]  Amnon Yariv,et al.  Real time image subtraction and ‘‘exclusive or’’ operation using a self‐pumped phase conjugate mirror , 1986 .

[95]  Pochi Yeh,et al.  Optical Matrix-Matrix Multiplication Using Multi-Color Four-Wave Mixing , 1988, Photonics West - Lasers and Applications in Science and Engineering.

[96]  S. M. Jensen,et al.  Observation of the time‐reversed replica of a monochromatic optical wave , 1978 .

[97]  P. Yeh,et al.  Optical interconnection using photorefractive dynamic holograms. , 1988, Applied optics.

[98]  D. B. Fraser,et al.  HOLOGRAPHIC STORAGE IN LITHIUM NIOBATE , 1968 .

[99]  P Yeh Fundamental limit of the speed of photorefractive effect and its impact on device applications and material research. , 1987, Applied optics.

[100]  J. J. Amodei,et al.  HOLOGRAPHIC PATTERN FIXING IN ELECTRO‐OPTIC CRYSTALS , 1971 .

[101]  Jean-Pierre Herriau,et al.  Quasi‐nondestructive readout of holographically stored information in photorefractive Bi12SiO20 crystals , 1989 .

[102]  P Yeh,et al.  Energy efficiency of optical interconnections using photorefractive holograms. , 1990, Applied optics.

[103]  G C Valley,et al.  Picosecond photorefractive effect in BaTiO(3). , 1987, Optics letters.

[104]  J P Huignard,et al.  Noise suppression in photorefractive image amplifiers. , 1989, Optics letters.