Enumeration of Symmetry Classes of Parallelogram Polyominoes

Parallelogram polyominoes are a subclass of convex polyominoes in the square lattice that has been studied extensively in the literature. Recently congruence classes of convex polyominoes with respect to rotations and reflections have been enumerated by counting orbits under the action of the dihedral group D4, of symmetries of the square, on (translation-type) convex polyominoes. Asymmetric convex polyominoes were also enumerated using Moebius inversion in the lattice of subgroups of D4. Here we extend these results to the subclass of parallelogram polyominos using a subgroup D2 of D4 which acts of this class.

[1]  George Polya,et al.  On the number of certain lattice polygons , 1969 .

[2]  Ronald L. Rivest,et al.  Asymptotic bounds for the number of convex n-ominoes , 1974, Discret. Math..

[3]  D. Hugh Redelmeier,et al.  Counting polyominoes: Yet another attack , 1981, Discret. Math..

[4]  Edward A. Bender,et al.  Convex n-ominoes , 1974, Discret. Math..

[5]  Philippe Flajolet Combinatorial aspects of continued fractions , 1980, Discret. Math..

[7]  Jacques Labelle On pairs of non-crossing generalized Dyck paths☆ , 1993 .

[8]  Mireille Bousquet-Mélou,et al.  A method for the enumeration of various classes of column-convex polygons , 1996, Discret. Math..

[9]  Mireille Bousquet-Mélou,et al.  Empilements de segments et q-énumération de polyominos convexes dirigés , 1992, J. Comb. Theory, Ser. A.

[10]  Jean-Marc Fedou,et al.  Enumeration of skew Ferrers diagrams , 1993, Discret. Math..

[11]  Marie-Pierre Delest,et al.  Generating functions for column-convex polyominoes , 1988, J. Comb. Theory, Ser. A.

[12]  H. Temperley Combinatorial Problems Suggested by the Statistical Mechanics of Domains and of Rubber-Like Molecules , 1956 .

[13]  Mireille Bousquet-Mélou,et al.  The generating function of convex polyominoes: The resolution of a q-differential system , 1995, Discret. Math..

[14]  Mireille Bousquet-Mélou,et al.  Stacking of segments and q -enumeration of convex directed polyominoes , 1992 .

[15]  Robert A. Sulanke,et al.  Three recurrences for parallelogram polyominoes , 1999 .

[16]  Mireille Bousquet-Mélou,et al.  Percolation Models and Animals , 1996, Eur. J. Comb..

[17]  H. Temperley Statistical mechanics and the partition of numbers II. The form of crystal surfaces , 1952, Mathematical Proceedings of the Cambridge Philosophical Society.

[18]  David A. Klarner My Life Among The Polyominoes , 1981 .

[19]  Gérard Viennot,et al.  Algebraic Languages and Polyominoes Enumeration , 1983, Theor. Comput. Sci..

[20]  Gilbert Labelle,et al.  Combinatorial species and tree-like structures , 1997, Encyclopedia of mathematics and its applications.

[21]  G. Rota On the foundations of combinatorial theory I. Theory of Möbius Functions , 1964 .