Enumeration of Symmetry Classes of Parallelogram Polyominoes
暂无分享,去创建一个
[1] George Polya,et al. On the number of certain lattice polygons , 1969 .
[2] Ronald L. Rivest,et al. Asymptotic bounds for the number of convex n-ominoes , 1974, Discret. Math..
[3] D. Hugh Redelmeier,et al. Counting polyominoes: Yet another attack , 1981, Discret. Math..
[4] Edward A. Bender,et al. Convex n-ominoes , 1974, Discret. Math..
[5] Philippe Flajolet. Combinatorial aspects of continued fractions , 1980, Discret. Math..
[7] Jacques Labelle. On pairs of non-crossing generalized Dyck paths☆ , 1993 .
[8] Mireille Bousquet-Mélou,et al. A method for the enumeration of various classes of column-convex polygons , 1996, Discret. Math..
[9] Mireille Bousquet-Mélou,et al. Empilements de segments et q-énumération de polyominos convexes dirigés , 1992, J. Comb. Theory, Ser. A.
[10] Jean-Marc Fedou,et al. Enumeration of skew Ferrers diagrams , 1993, Discret. Math..
[11] Marie-Pierre Delest,et al. Generating functions for column-convex polyominoes , 1988, J. Comb. Theory, Ser. A.
[12] H. Temperley. Combinatorial Problems Suggested by the Statistical Mechanics of Domains and of Rubber-Like Molecules , 1956 .
[13] Mireille Bousquet-Mélou,et al. The generating function of convex polyominoes: The resolution of a q-differential system , 1995, Discret. Math..
[14] Mireille Bousquet-Mélou,et al. Stacking of segments and q -enumeration of convex directed polyominoes , 1992 .
[15] Robert A. Sulanke,et al. Three recurrences for parallelogram polyominoes , 1999 .
[16] Mireille Bousquet-Mélou,et al. Percolation Models and Animals , 1996, Eur. J. Comb..
[17] H. Temperley. Statistical mechanics and the partition of numbers II. The form of crystal surfaces , 1952, Mathematical Proceedings of the Cambridge Philosophical Society.
[18] David A. Klarner. My Life Among The Polyominoes , 1981 .
[19] Gérard Viennot,et al. Algebraic Languages and Polyominoes Enumeration , 1983, Theor. Comput. Sci..
[20] Gilbert Labelle,et al. Combinatorial species and tree-like structures , 1997, Encyclopedia of mathematics and its applications.
[21] G. Rota. On the foundations of combinatorial theory I. Theory of Möbius Functions , 1964 .