A comprehensive review of thermo-physical properties and convective heat transfer to nanofluids

Nanofluids are fluid nanoparticle suspensions that exhibit enhanced properties at modest nanoparticle concentrations. Nanofluids have unique heat transfer properties and are utilized in high heat flux systems (e.g., electronic cooling systems, heat exchanger liquids, solar collectors, and nuclear reactors). However, suspension stability is critical in the development and application of these heat transfer fluids. Reynolds number, mass concentration, and particle size control the heat transfer behavior of fluids. Sedimentation and agglomeration of nanoparticles in nanofluids and their dispersion have rarely been investigated. Therefore, this paper explains the parameters that affect the stability of nanofluids and the different techniques used to evaluate the stability of nanofluids. This paper also presents an updated review of properties of nanofluids, such as physical (thermal conductivity) and rheological properties, with emphasis on their heat transfer enhancement characteristics. Studies on zeta potential as a function of pH are discussed and extended further to identify opportunities for future research.

[1]  R. Prasher,et al.  Enhanced mass transport in nanofluids. , 2006, Nano letters.

[2]  K. Wasewar,et al.  Study on concentric tube heat exchanger heat transfer performance using Al2O3 – water based nanofluids , 2013 .

[3]  C. Nan,et al.  Effective thermal conductivity of particulate composites with interfacial thermal resistance , 1997 .

[4]  J. Ferreira,et al.  Influence of particle size distribution on rheology and particle packing of silica-based suspensions , 2004 .

[5]  T. Maré,et al.  Efficiency of carbon nanotubes water based nanofluids as coolants , 2014 .

[6]  A. Nikolov,et al.  Colloidal dispersions : Structure, stability and geometric confinement , 2005 .

[7]  Goodarz Ahmadi,et al.  Numerical Study of Entropy Generation in a Flowing Nanofluid Used in Micro- and Minichannels , 2013, Entropy.

[8]  J. Maxwell A Treatise on Electricity and Magnetism , 1873, Nature.

[9]  S. Ramaprabhu,et al.  Investigation of thermal and electrical conductivity of graphene based nanofluids , 2010 .

[10]  I. Fonseca,et al.  Thermodynamic and Transport Properties of CNT-Water Based Nanofluids , 2010 .

[11]  Velraj Ramalingam,et al.  HEAT TRANSFER ENHANCEMENT USING NANOFLUIDS An Overview , 2012 .

[12]  J. Eastman,et al.  Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles , 1999 .

[13]  S. M. Sohel Murshed,et al.  Superior thermal features of carbon nanotubes-based nanofluids – A review , 2014 .

[14]  B. Ku,et al.  Stability and thermal conductivity characteristics of nanofluids , 2007 .

[15]  S. Kakaç,et al.  Review of convective heat transfer enhancement with nanofluids , 2009 .

[16]  Ronald G. Larson,et al.  The rheology of dilute solutions of flexible polymers: Progress and problems , 2005 .

[17]  Xiaohao Wei,et al.  CePO4 Nanofluids: Synthesis and Thermal Conductivity , 2009 .

[18]  Marc J. Assael,et al.  Thermal Conductivity of Suspensions of Carbon Nanotubes in Water , 2004 .

[19]  Chii-Ruey Lin,et al.  A Study of Magnetic Field Effect on Nanofluid Stability of CuO , 2004 .

[20]  J. H. Kim,et al.  Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer , 2003 .

[21]  S. Kazi,et al.  Validation of heat transfer and friction loss data for fibre suspensions in a circular and a coaxial pipe heat exchanger , 2014 .

[22]  J. Buongiorno,et al.  Experimental Investigation of Turbulent Convective Heat Transfer and Pressure Loss of Alumina/Water and Zirconia/Water Nanoparticle Colloids (Nanofluids) in Horizontal Tubes , 2008 .

[23]  Yurong He,et al.  Experimental study on the characteristics of thermal conductivity and shear viscosity of viscoelastic-fluid-based nanofluids containing multiwalled carbon nanotubes , 2013 .

[24]  Robert D. Cowan,et al.  Pulse Method of Measuring Thermal Diffusivity at High Temperatures , 1961 .

[25]  Shuo Yang,et al.  Influence of pH and SDBS on the Stability and Thermal Conductivity of Nanofluids , 2009 .

[26]  Jianlin Yu,et al.  Experimental study on the thermal conductivity enhancement of water based nanofluids using different types of carbon nanotubes , 2015 .

[27]  Y. Jeong,et al.  The effect of pressure on the critical heat flux in water-based nanofluids containing Al2O3 and Fe3O4 nanoparticles , 2013 .

[28]  Ho Seon Ahn,et al.  A Review on Critical Heat Flux Enhancement With Nanofluids and Surface Modification , 2012 .

[29]  Wenhua Yu,et al.  Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements , 2008 .

[30]  R. Prasher,et al.  Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid). , 2006, Nano letters.

[31]  Chi-Chuan Wang,et al.  Enhancement of thermal conductivity with carbon nanotube for nanofluids , 2005 .

[32]  L. Colla,et al.  Viscosity and thermal conductivity measurements of water-based nanofluids containing titanium oxide nanoparticles , 2012 .

[33]  J. Buongiorno,et al.  Preparation and Characterization of Various Nanofluids , 2006, 2007 Cleantech Conference and Trade Show Cleantech 2007.

[34]  Sarit K. Das,et al.  Model for heat conduction in nanofluids. , 2004, Physical review letters.

[35]  Kirk L. Yerkes,et al.  Experimental investigation into the convective heat transfer and system-level effects of Al2O3-propanol nanofluid , 2010 .

[36]  Frank P. Incropera,et al.  Fundamentals of Heat and Mass Transfer , 1981 .

[37]  Q. Xue,et al.  A model of thermal conductivity of nanofluids with interfacial shells , 2005 .

[38]  Ojha,et al.  Stability, pH and Viscosity Relationships in Zinc Oxide Based Nanofluids Subject to Heating and Cooling Cycles , 2010 .

[39]  Li Yu-hua,et al.  Temperature dependence of thermal conductivity of nanofluids , 2008 .

[40]  R. Prasher,et al.  Thermal conductance of nanofluids: is the controversy over? , 2008 .

[41]  L. Colla,et al.  Experimental stability analysis of different water-based nanofluids , 2011, Nanoscale research letters.

[42]  Yujin Hwang,et al.  Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions , 2009 .

[43]  S. M. Sohel Murshed,et al.  A review of boiling and convective heat transfer with nanofluids , 2011 .

[44]  K. Leong,et al.  Enhanced thermal conductivity of TiO2—water based nanofluids , 2005 .

[45]  Sarit K. Das,et al.  Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects , 2003 .

[46]  Haisheng Chen,et al.  Predicting thermal conductivity of liquid suspensions of nanoparticles (nanofluids) based on rheology , 2009 .

[47]  Y. Xuan,et al.  Convective heat transfer and flow characteristics of Cu-water nanofluid , 2002, Science China Technological Sciences.

[48]  Dunming Zhu,et al.  Thermal energy storage characteristics of Cu–H2O nanofluids , 2014 .

[49]  Shuangfeng Wang,et al.  Experimental investigation on photothermal properties of nanofluids for direct absorption solar thermal energy systems , 2013 .

[50]  K. Wong,et al.  Transport properties of alumina nanofluids , 2008, Nanotechnology.

[51]  Kenneth D. Kihm,et al.  Thermal Conductivity Enhancement of Nanofluids by Brownian Motion , 2005 .

[52]  E. Grulke,et al.  Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow , 2005 .

[53]  Rahman Saidur,et al.  Performance investigation of an automotive car radiator operated with nanofluid-based coolants (nanofluid as a coolant in a radiator) , 2010 .

[54]  K. V. Sharma,et al.  Experimental investigation of forced convection heat transfer and friction factor in a tube with Fe3O4 magnetic nanofluid , 2012 .

[55]  P. Keblinski,et al.  Hydrodynamic field around a Brownian particle. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[56]  Wenhua Yu,et al.  The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model , 2003 .

[57]  S. Naga Sarada,et al.  Experimental thermal conductivity of ethylene glycol and water mixture based low volume concentration of Al2O3 and CuO nanofluids , 2013 .

[58]  P. Das,et al.  Concentration and size dependence of nano-silver dispersed water based nanofluids. , 2012, Journal of colloid and interface science.

[59]  D. Cahill,et al.  Nanofluids for thermal transport , 2005 .

[60]  Yulong Ding,et al.  Phase transfer based synthesis and thermophysical properties of Au/Therminol VP-1 nanofluids , 2013 .

[61]  Jung‐Kun Lee,et al.  Characterization of ZnO nanoparticle suspension in water: Effectiveness of ultrasonic dispersion , 2009 .

[62]  Zhang Hainan,et al.  Heat transfer and flow features of Al2O3–water nanofluids flowing through a circular microchannel – Experimental results and correlations , 2013 .

[63]  Chunqing Tan,et al.  Heat transfer and flow behaviour of aqueous suspensions of titanate nanotubes (nanofluids) , 2008 .

[64]  Salim Newaz Kazi,et al.  Experimental Investigation of Convective Heat Transfer Using Graphene Nanoplatelet Based Nanofluids under Turbulent Flow Conditions , 2014 .

[65]  Lin Wei,et al.  Annealing effect on photovoltaic performance of CdSe quantum-dots-sensitized TiO 2 nanorod solar cells , 2012 .

[66]  Y. Xuan,et al.  Aggregation structure and thermal conductivity of nanofluids , 2003 .

[67]  A. Ghozatloo,et al.  Effects of surface modification on the dispersion and thermal conductivity of CNT/water nanofluids , 2014 .

[68]  Janos H. Fendler,et al.  Colloid chemical approach to nanotechnology , 2001 .

[69]  H. Metselaar,et al.  A review of nanofluid stability properties and characterization in stationary conditions , 2011 .

[70]  J. M. McCloskey,et al.  Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[71]  Moh’d A. Al-Nimr,et al.  Using nanofluids in enhancing the performance of a novel two-layer solar pond , 2014 .

[72]  Salim Newaz Kazi,et al.  A comprehensive literature review of bio-fuel performance in internal combustion engine and relevant costs involvement , 2014 .

[73]  Yunfei Liu,et al.  Morphology and Photoluminescence of Ba0.5Sr0.5MoO4 Powders by a Molten Salt Method , 2012 .

[74]  M. Ghanbarpour,et al.  Experimental investigation on thermo-physical properties of copper/diethylene glycol nanofluids fabricated via microwave-assisted route , 2014 .

[75]  Ahmad Ghozatloo,et al.  Convective heat transfer enhancement of graphene nanofluids in shell and tube heat exchanger , 2014 .

[76]  Paul Quincey,et al.  Effect of nanoparticle concentration on zeta-potential measurement results and reproducibility , 2010 .

[77]  M. Chandrasekar,et al.  Effect of Al2O3–Cu/water hybrid nanofluid in heat transfer , 2012 .

[78]  Yulong Ding,et al.  Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotube nanofluids) , 2004 .

[79]  Jahar Sarkar,et al.  A critical review on convective heat transfer correlations of nanofluids , 2011 .

[80]  J. Barrat,et al.  Modeling transient absorption and thermal conductivity in a simple nanofluid. , 2006, Nano letters.

[81]  E. Verwey,et al.  Theory of the stability of lyophobic colloids. , 1955, The Journal of physical and colloid chemistry.

[82]  Sandip Sarkar,et al.  Mixed convective flow stability of nanofluids past a square cylinder by dynamic mode decomposition , 2013 .

[83]  J. Amani,et al.  Experimental study on the effect of TiO2–water nanofluid on heat transfer and pressure drop , 2012 .

[84]  Chongyoup Kim,et al.  VISCOSITY AND THERMAL CONDUCTIVITY OF COPPER OXIDE NANOFLUID DISPERSED IN ETHYLENE GLYCOL , 2005 .

[85]  L. Gao,et al.  Effect of interfacial nanolayer on thermophoresis in nanofluids , 2012 .

[86]  Somchai Wongwises,et al.  A critical review of convective heat transfer of nanofluids , 2007 .

[87]  S. Phillpot,et al.  THERMAL TRANSPORT IN NANOFLUIDS1 , 2004 .

[88]  P. Meakin,et al.  Effect of aggregation on thermal conduction in colloidal nanofluids , 2006 .

[89]  D. Hasselman,et al.  Effective Thermal Conductivity of Composites with Interfacial Thermal Barrier Resistance , 1987 .

[90]  R. Prasher,et al.  Thermal conductivity of nanoscale colloidal solutions (nanofluids). , 2005, Physical review letters.

[91]  Wenjun Fang,et al.  Preparation and stability of silver/kerosene nanofluids , 2012, Nanoscale Research Letters.

[92]  K. Goudarzi,et al.  Experimental study on the effect of pH variation of nanofluids on the thermal efficiency of a solar collector with helical tube , 2015 .

[93]  S. Phillpot,et al.  Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids) , 2002 .

[94]  B. Derjaguin,et al.  Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes , 1993 .

[95]  Kannan M. Munisamy,et al.  Characteristics of heat transfer and fluid flow in microtube and microchannel using conventional fluids and nanofluids: A review , 2013 .

[96]  Ashutosh Kumar Singh,et al.  Microwave synthesis of silver nanofluids with polyvinylpyrrolidone (PVP) and their transport properties , 2008 .

[97]  Saeed Zeinali Heris,et al.  Experimental investigation of oxide nanofluids laminar flow convective heat transfer , 2006 .

[98]  Young-Chull Ahn,et al.  Production and dispersion stability of nanoparticles in nanofluids , 2008 .

[100]  Robello Samuel,et al.  Formation and characterization of thermal and electrical properties of CuO and ZnO nanofluids in xanthan gum , 2014 .

[101]  Characterization of physical properties of nanofluids for heat transfer application , 2012 .

[102]  Mehrdad Massoudi,et al.  Viscosity and thermal conductivity of nanofluids containing multi-walled carbon nanotubes stabilized by chitosan , 2011 .

[103]  Stephen U. S. Choi Enhancing thermal conductivity of fluids with nano-particles , 1995 .

[104]  H. Hong,et al.  Effects of pH on heat transfer nanofluids containing ZrO2 and TiO2 nanoparticles , 2011 .

[105]  Y. Rao NANOFLUIDS: STABILITY, PHASE DIAGRAM, RHEOLOGY AND APPLICATIONS , 2010 .

[106]  Yanmin Wang,et al.  Heat transfer enhancement by magnetic nanofluids—A review , 2013 .

[107]  M. Shafii,et al.  Thermal conductivity of mixed nanofluids under controlled pH conditions , 2013 .

[108]  T. Maré,et al.  Heat transfer properties of aqueous carbon nanotubes nanofluids in coaxial heat exchanger under laminar regime , 2014 .

[109]  Yulong Ding,et al.  Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions , 2004 .

[110]  Haisheng Chen,et al.  Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe , 2007 .

[111]  Wenhua Yu,et al.  Application of SAXS to the study of particle-size-dependent thermal conductivity in silica nanofluids , 2008 .

[112]  Jiyun Zhao,et al.  A review of nanofluid heat transfer and critical heat flux enhancement—Research gap to engineering application , 2013 .

[113]  E. Timofeeva,et al.  Particle shape effects on thermophysical properties of alumina nanofluids , 2009 .

[114]  S. Paras,et al.  INVESTIGATING THE EFFICACY OF NANOFLUIDS AS COOLANTS IN PLATE HEAT EXCHANGERS (PHE) , 2009 .

[115]  Seyed Mojtaba Zebarjad,et al.  Fabrication, characterization and measurement of thermal conductivity of Fe3O4 nanofluids , 2010 .

[116]  S. Kalaiselvam,et al.  Preparation and thermal energy storage behaviour of stearic acid-TiO2 nanofluids as a phase change material for solar heating systems , 2013 .

[117]  Z. Han,et al.  Synthesis and thermal characterization of phase-changeable indium/polyalphaolefin nanofluids , 2008 .

[118]  J. Hao,et al.  Thermal conductivity and rheological properties of graphite/oil nanofluids , 2012 .

[119]  Wenhua Yu,et al.  The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Hamilton–Crosser model , 2004 .

[120]  Chunqing Tan,et al.  Rheological behaviour of nanofluids , 2007 .

[121]  Yulong Ding,et al.  Aggregation and settling in aqueous polydisperse alumina nanoparticle suspensions , 2012, Journal of Nanoparticle Research.

[122]  Xiaohao Wei,et al.  Nanofluids: Synthesis, Heat Conduction, and Extension , 2009 .

[123]  Y. Xuan,et al.  Heat transfer enhancement of nanofluids , 2000 .

[124]  Stability and Thermal Conductivity Characteristics of Nanofluids (H2O/CH3OH + NaCl + Al2O3 Nanoparticles) for CO2 Absorption Application , 2012 .

[125]  C. Choi,et al.  Preparation and heat transfer properties of nanoparticle-in-transformer oil dispersions as advanced energy-efficient coolants , 2008 .

[126]  Michel Quintard,et al.  Nanofluids of the Future , 2009 .

[127]  O. K. Crosser,et al.  Thermal Conductivity of Heterogeneous Two-Component Systems , 1962 .

[128]  Emad Sadeghinezhad,et al.  Preparation, characterization, viscosity, and thermal conductivity of nitrogen-doped graphene aqueous nanofluids , 2014, Journal of Materials Science.

[129]  E. Timofeeva,et al.  Mechanisms and models of effective thermal conductivities of nanofluids. , 2010, Journal of nanoscience and nanotechnology.

[130]  A. Yu. Kuznetsov,et al.  Application of the modulated temperature differential scanning calorimetry technique for the determination of the specific heat of copper nanofluids , 2012 .

[131]  Vincenzo Bianco,et al.  Performance analysis of turbulent convection heat transfer of Al2O3 water-nanofluid in circular tubes at constant wall temperature , 2014 .

[132]  B. Wang,et al.  A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles , 2003 .

[133]  Sayantan Mukherjee,et al.  Preparation and Stability of Nanofluids-A Review , 2013 .

[134]  Thomas J. Dougherty,et al.  A Mechanism for Non‐Newtonian Flow in Suspensions of Rigid Spheres , 1959 .

[135]  Jinlin Wang,et al.  Measurements of nanofluid viscosity and its implications for thermal applications , 2006 .

[136]  Xianfan Xu,et al.  Thermal Conductivity of Nanoparticle -Fluid Mixture , 1999 .

[137]  Haifeng Zhu,et al.  A novel one-step chemical method for preparation of copper nanofluids. , 2004, Journal of colloid and interface science.

[138]  M. Chandrasekar,et al.  Mechanisms proposed through experimental investigations on thermophysical properties and forced convective heat transfer characteristics of various nanofluids – A review , 2012 .

[139]  Xiaohao Wei,et al.  Synthesis and thermal conductivity of microfluidic copper nanofluids , 2010 .

[140]  Ho Chang,et al.  Electrostatic and Sterical Stabilization of CuO Nanofluid Prepared by Vacuum Arc Spray Nanofluid Synthesis System (ASNSS) , 2009 .

[141]  Tae-Keun Hong,et al.  Study of the enhanced thermal conductivity of Fe nanofluids , 2005 .

[142]  Patricia E. Gharagozloo,et al.  Diffusion, aggregation, and the thermal conductivity of nanofluids , 2008 .

[143]  Yulong Ding,et al.  Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids) , 2006 .

[144]  D. Lerche Dispersion Stability and Particle Characterization by Sedimentation Kinetics in a Centrifugal Field , 2002 .

[145]  S. Shtrikman,et al.  A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials , 1962 .

[146]  E. Grulke,et al.  Anomalous thermal conductivity enhancement in nanotube suspensions , 2001 .

[147]  Rahman Saidur,et al.  A REVIEW ON APPLICATIONS AND CHALLENGES OF NANOFLUIDS , 2011 .

[148]  Liu Yang,et al.  An experimental and theoretical study of the influence of surfactant on the preparation and stability of ammonia-water nanofluids , 2011 .

[149]  C. N. Lau,et al.  Superior thermal conductivity of single-layer graphene. , 2008, Nano letters.

[150]  Shuangfeng Wang,et al.  Silicone based nanofluids containing functionalized graphene nanosheets , 2013 .

[151]  Stephen U. S. Choi NANOFLUIDS: FROM VISION TO REALITY THROUGH RESEARCH , 2009 .

[152]  Gianpiero Colangelo,et al.  Review of heat transfer in nanofluids: Conductive, convective and radiative experimental results , 2015 .

[153]  S. Wongwises,et al.  An experimental study on the heat transfer performance and pressure drop of TiO2-water nanofluids flowing under a turbulent flow regime , 2010 .

[154]  A. Sousa,et al.  Enhanced heat transfer and friction factor of MWCNT–Fe3O4/water hybrid nanofluids , 2014 .

[155]  Chien-Chih Chen,et al.  Pressure drop of TiO2 nanofluid in circular pipes , 2011 .

[156]  L. Tadrist,et al.  A review on boiling heat transfer enhancement with nanofluids , 2011, Nanoscale research letters.

[157]  Sarit K. Das,et al.  Effect of particle size on the convective heat transfer in nanofluid in the developing region , 2009 .

[158]  Mónica Oliveira,et al.  Critical analysis of the thermal conductivity models for CNT based nanofluids , 2014 .

[159]  Jahar Sarkar,et al.  Heat transfer and pressure drop characteristics of CeO2/water nanofluid in plate heat exchanger , 2013 .

[160]  M. Esfahany,et al.  Experimental study of turbulent convective heat transfer and pressure drop of dilute CuO/water nanofluid inside a circular tube , 2010 .

[161]  J. Eastman,et al.  Enhanced thermal conductivity through the development of nanofluids , 1996 .

[162]  A. Solomon,et al.  Effect of nanofluids on thermal performance of closed loop pulsating heat pipe , 2014 .

[163]  Somchai Wongwises,et al.  Heat transfer enhancement and pressure drop characteristics of TiO2–water nanofluid in a double-tube counter flow heat exchanger , 2009 .

[164]  D. Das,et al.  Development of new correlations for convective heat transfer and friction factor in turbulent regime for nanofluids , 2010 .

[165]  Mansoo Choi,et al.  Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities , 2003 .

[166]  Ahmad Reza Sajadi,et al.  Investigation of turbulent convective heat transfer and pressure drop of TiO2/water nanofluid in circular tube☆ , 2011 .

[167]  J. Koo,et al.  A new thermal conductivity model for nanofluids , 2004 .

[168]  Patricia E. Gharagozloo,et al.  A Benchmark Study on the Thermal Conductivity of Nanofluids , 2009 .

[169]  Nandy Putra,et al.  Pool boiling of nano-fluids on horizontal narrow tubes , 2003 .

[170]  G. Biswas,et al.  Mixed convective heat transfer of nanofluids past a circular cylinder in cross flow in unsteady regime , 2012 .

[171]  Bangming Gu,et al.  Thermal conductivity of nanofluids containing high aspect ratio fillers , 2013 .

[172]  T. A. El-Brolossy,et al.  Non-intrusive method for thermal properties measurement of nanofluids , 2013 .

[173]  Zhengguo Zhang,et al.  Thermodynamic properties and thermal stability of ionic liquid-based nanofluids containing graphene as advanced heat transfer fluids for medium-to-high-temperature applications , 2014 .

[174]  Seok Pil Jang,et al.  Flow and convective heat transfer characteristics of water-based Al2O3 nanofluids in fully developed laminar flow regime , 2009 .

[175]  Jae Won Lee,et al.  Thermal conductivity measurement of methanol-based nanofluids with Al2O3 and SiO2 nanoparticles , 2012 .

[176]  Rahmatollah Khodabandeh,et al.  Shelf stability of nanofluids and its effect on thermal conductivity and viscosity , 2013 .

[177]  Cen Ke-fa,et al.  Dependence of Nanofluid Viscosity on Particle Size and pH Value , 2009 .

[178]  S. M. Peyghambarzadeh,et al.  Performance of water based CuO and Al2O3 nanofluids in a Cu–Be alloy heat sink with rectangular microchannels , 2014 .

[179]  F. C. Li,et al.  Heat Transfer Performance Of Viscoelastic-Fluid-Based Nanofluid Pipe Flow At Entrance Region , 2015 .

[180]  J. Koo,et al.  A novel method to evaluate dispersion stability of nanofluids , 2014 .

[181]  Y. Xuan,et al.  Heat transfer performance of Cu–water nanofluids in the jet arrays impingement cooling system. , 2014 .

[182]  Emad Sadeghinezhad,et al.  Numerical simulation of laminar to turbulent nanofluid flow and heat transfer over a backward-facing step , 2014, Appl. Math. Comput..

[183]  Patrick E. Phelan,et al.  Pool boiling of nanofluids: Comprehensive review of existing data and limited new data , 2009 .

[184]  J. Jang,et al.  Carbon nanofibers: a novel nanofiller for nanofluid applications. , 2007, Small.

[185]  M. Saeedinia,et al.  Pressure drop and thermal characteristics of CuO–base oil nanofluid laminar flow in flattened tubes under constant heat flux , 2011 .

[186]  J. W. Goodwin,et al.  Rheology for Chemists: An Introduction , 2008 .

[187]  Nikola Kallay,et al.  Stability of nanodispersions: a model for kinetics of aggregation of nanoparticles. , 2002, Journal of colloid and interface science.

[188]  Y. Xuan,et al.  Investigation on Convective Heat Transfer and Flow Features of Nanofluids , 2003 .

[189]  Yurong He,et al.  Experimental investigation on the thermal conductivity and shear viscosity of viscoelastic-fluid-based nanofluids , 2012 .

[190]  M. Kaminski,et al.  Prediction of the effective parameters of the nanofluids using the generalized stochastic perturbation method , 2014 .

[191]  Munkhjargal Bat-Erdene,et al.  Effect of the collision medium size on thermal performance of silver nanoparticles based aqueous nanofluids , 2013 .

[192]  Tae-Keun Hong,et al.  Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles , 2006 .

[193]  W. Roetzel,et al.  TEMPERATURE DEPENDENCE OF THERMAL CONDUCTIVITY ENHANCEMENT FOR NANOFLUIDS , 2003 .

[194]  Robert A. Taylor,et al.  Small particles, big impacts: A review of the diverse applications of nanofluids , 2013 .

[195]  Angel Huminic,et al.  Application of nanofluids in heat exchangers: A review , 2012 .

[196]  R. Prasher,et al.  Brownian-motion-based convective-conductive model for the effective thermal conductivity of nanofluids , 2006 .

[197]  R. Prasher,et al.  Brownian dynamics simulation to determine the effective thermal conductivity of nanofluids , 2004 .

[198]  H. Ahmadzadeh,et al.  NANOFLUIDS FOR HEAT TRANSFER ENHANCEMENT-A REVIEW , 2013 .

[199]  Daxiong Wu,et al.  Carbon nanotube glycol nanofluids: Photo-thermal properties, thermal conductivities and rheological behavior , 2012 .

[200]  Gang Chen,et al.  Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid , 2008 .

[201]  Saeed Zeinali Heris,et al.  Analysis of entropy generation between co-rotating cylinders using nanofluids , 2012 .

[202]  J. Fish,et al.  Role of Brownian motion hydrodynamics on nanofluid thermal conductivity , 2006 .

[203]  Jyotirmay Mathur,et al.  An overview of Nanofluids: A new media towards green environment , 2012 .

[204]  Tiantian Kong,et al.  Synthesis and thermal conductivity of Cu2O nanofluids , 2009 .

[205]  Hongwei Xie,et al.  Thermal Conductivity of Suspensions Containing Nanosized SiC Particles , 2002 .

[206]  C. T. Nguyen,et al.  Temperature and particle-size dependent viscosity data for water-based nanofluids : Hysteresis phenomenon , 2007 .

[207]  K. P. Venkitaraj,et al.  Synthesis of Al2O3–Cu/water hybrid nanofluids using two step method and its thermo physical properties , 2011 .

[208]  Behdad Moghtaderi,et al.  Effects of colloidal properties on sensible heat transfer in water-based titania nanofluids , 2013 .

[209]  Milad Tajik Jamal-Abad,et al.  Experimental studies on the heat transfer and pressure drop characteristics of Cu–water and Al–water nanofluids in a spiral coil , 2013 .

[210]  Wei Yu,et al.  A review on nanofluids: preparation, stability mechanisms, and applications , 2012 .

[211]  The thermal conductivity of aqueous nanofluids containing ceria nanoparticles , 2010 .

[212]  Ibrahim Palabiyik,et al.  Stability of glycol nanofluids — The theory and experiment , 2013 .

[213]  Stephen U. S. Choi,et al.  Role of Brownian motion in the enhanced thermal conductivity of nanofluids , 2004 .

[214]  H. Ali,et al.  Experimental investigation of convective heat transfer augmentation for car radiator using ZnO–water nanofluids , 2015 .

[215]  Mohammad Mohsen Sarafraz,et al.  Convective boiling and particulate fouling of stabilized CuO-ethylene glycol nanofluids inside the annular heat exchanger , 2014 .

[216]  I. Abdulagatov,et al.  Experimental Study of the Effect of Temperature, Pressure and Concentration on the Viscosity of Aqueous NaBr Solutions , 2006 .

[217]  Mónica S. A. Oliveira,et al.  Assessing colloidal stability of long term MWCNT based nanofluids. , 2012, Journal of colloid and interface science.

[218]  Haisheng Chen,et al.  Stability of nanofluids in quiescent and shear flow fields , 2011, Nanoscale research letters.

[219]  G. Ahmadi,et al.  An experimental study on thermal conductivity and viscosity of nanofluids containing carbon nanotubes , 2014, Nanoscale Research Letters.

[220]  Arif Hepbasli,et al.  Heat transfer performance and exergy analyses of a corrugated plate heat exchanger using metal oxide nanofluids , 2014 .

[221]  S. Shtrikman,et al.  A variational approach to the theory of the elastic behaviour of multiphase materials , 1963 .

[222]  Hyomin Jeong,et al.  Surfactant-free dispersion of silver nanoparticles into MWCNT-aqueous nanofluids prepared by one-step technique and their thermal characteristics , 2013 .

[223]  Arun S. Mujumdar,et al.  A review on nanofluids - part II: experiments and applications , 2008 .

[224]  Y. Mortazavi,et al.  Stability and thermal conductivity of nanofluids of tin dioxide synthesized via microwave-induced combustion route , 2010 .

[225]  Qing-song Yu,et al.  Plasma nanocoated carbon nanotubes for heat transfer nanofluids , 2010, Nanotechnology.

[226]  S. Kabelac,et al.  Experimental convective heat transfer with nanofluids , 2008 .

[227]  Somchai Wongwises,et al.  Comparison of the effects of measured and computed thermophysical properties of nanofluids on heat transfer performance , 2010 .

[228]  G. K. Morris,et al.  Nanofluids in a forced-convection liquid cooling system - benefits and design challenges - , 2010, 2010 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems.

[229]  Huaqing Xie,et al.  Thermal conductivity enhancement of suspensions containing nanosized alumina particles , 2002 .

[230]  Tsing-Tshih Tsung,et al.  Shape-controlled synthesis of Cu-based nanofluid using submerged arc nanoparticle synthesis system (SANSS) , 2005 .

[231]  M. Mehrali,et al.  Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets , 2014, Nanoscale Research Letters.

[232]  S. Kabelac,et al.  HEAT TRANSFER MECHANISMS IN NANOFLUIDS -- EXPERIMENTS AND THEORY -- , 2006 .

[233]  Kaufui V. Wong,et al.  Applications of Nanofluids: Current and Future , 2010 .

[234]  Arash Karimipour,et al.  Mixed convection of copper-water nanofluid in a shallow inclined lid driven cavity using the lattice Boltzmann method , 2014 .

[235]  D. Das,et al.  A review and analysis on influence of temperature and concentration of nanofluids on thermophysical properties, heat transfer and pumping power , 2012 .

[236]  H. Hong,et al.  Enhanced thermal conductivity by aggregation in heat transfer nanofluids containing metal oxide nanoparticles and carbon nanotubes , 2008 .

[237]  M. T. Al-Asadi,et al.  Heat transfer through heat exchanger using Al2O3 nanofluid at different concentrations , 2013 .

[238]  Jacob Fish,et al.  Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids , 2008 .

[239]  Hua Li,et al.  Thermal conductivity enhancement dependent pH and chemical surfactant for Cu-H2O nanofluids , 2008 .

[240]  Farshad Kowsary,et al.  Experimental investigation of laminar convective heat transfer and pressure drop of water-based Al2O3 nanofluids in fully developed flow regime , 2013 .

[241]  Wenhua Yu,et al.  Nanofluids: Science and Technology , 2007 .

[242]  Yulong Ding,et al.  Experimental investigation into the pool boiling heat transfer of aqueous based γ-alumina nanofluids , 2005 .

[243]  Wang Xianju,et al.  Influence of pH on Nanofluids' Viscosity and Thermal Conductivity , 2009 .

[244]  H. Oztop,et al.  A review on how the researchers prepare their nanofluids , 2014 .

[245]  Park Sung Dae,et al.  Investigation of viscosity and thermal conductivity of SiC nanofluids for heat transfer applications , 2011 .

[246]  M. Chiesa,et al.  The Importance of Suspension Stability for the Hot-wire Measurements of Thermal Conductivity of Colloidal Suspensions. , 2007 .

[247]  G. Peterson,et al.  Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids) , 2006 .

[248]  Tiantian Kong,et al.  CuS/Cu2S nanofluids: Synthesis and thermal conductivity , 2010 .

[249]  G. Batchelor The effect of Brownian motion on the bulk stress in a suspension of spherical particles , 1977, Journal of Fluid Mechanics.

[250]  R. Mondragón,et al.  Characterization of silica–water nanofluids dispersed with an ultrasound probe: A study of their physical properties and stability , 2012 .

[251]  Rahman Saidur,et al.  A review on the performance of nanoparticles suspended with refrigerants and lubricating oils in refrigeration systems , 2011 .

[252]  John Philip,et al.  Thermal properties of nanofluids. , 2012, Advances in colloid and interface science.

[253]  I. Pop,et al.  A review of the applications of nanofluids in solar energy , 2013 .

[254]  T. Ala‐Nissila,et al.  Influence of particle size and shape on turbulent heat transfer characteristics and pressure losses in water-based nanofluids , 2013 .

[255]  T. Mckrell,et al.  Laminar convective heat transfer and viscous pressure loss of alumina–water and zirconia–water nanofluids , 2009 .

[256]  A. Rashidi,et al.  Preparation of nanofluids from functionalized Graphene by new alkaline method and study on the thermal conductivity and stability , 2013 .

[257]  Seok Pil Jang,et al.  Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles , 2008 .

[258]  Young I Cho,et al.  HYDRODYNAMIC AND HEAT TRANSFER STUDY OF DISPERSED FLUIDS WITH SUBMICRON METALLIC OXIDE PARTICLES , 1998 .

[259]  William W. Yu,et al.  ANOMALOUSLY INCREASED EFFECTIVE THERMAL CONDUCTIVITIES OF ETHYLENE GLYCOL-BASED NANOFLUIDS CONTAINING COPPER NANOPARTICLES , 2001 .

[260]  Haitao Zhu,et al.  Preparation and thermal conductivity of CuO nanofluid via a wet chemical method , 2011, Nanoscale research letters.

[261]  Ulrike Diebold,et al.  The surface science of titanium dioxide , 2003 .

[262]  Zhu Dongsheng,et al.  Dispersion behavior and thermal conductivity characteristics of Al2O3–H2O nanofluids , 2009 .

[263]  Goodarz Ahmadi,et al.  Investigation of nanofluid mixed convection in a shallow cavity using a two-phase mixture model , 2014 .