Prediction-based Approaches to Construct the Energy Map for Wireless Sensor Networks

The key challenge in the design of wireless sensor networks is maximizing their lifetime. The information about the amount of available energy in each part of the network is called the energy map and can be useful to increase the lifetime of the network. In this paper, we address the problem of constructing the energy map of a wireless sensor network using prediction-based approaches. We also present an energy dissipation model that is used to simulate the behavior of a sensor node in terms of energy consumption. Simulation results compare the performance of the prediction-based approaches with a naive one in which no prediction is used. The results show that the prediction-based approaches outperform the naive in a variety of parameters. Resumo. O maior desafio enfrentado no projeto de redes de sensores sem fio e maximizar o seu tempo de vida. A informacao sobre a quantidade de energia disponivel em cada parte da rede e chamada de mapa de energia e este mapa pode ser util para maximizar o tempo de vida da rede. Neste artigo, e avaliado o problema da construcao do mapa de energia para redes de sensores sem fio utilizando abordagens baseadas em predicao. Um modelo de dissipacao de energia tambem e apresentado e utilizado para simular o comportamento de um nodo sensor em termos do consumo de energia. Resultados de simulacao comparam o desempenho das abordagens baseadas em predicao com uma abordagem simples na qual nenhuma predicao e utilizada. Os resultados mostram que para uma variedade de parâmetros, as abordagens baseadas em predicao sao mais eficazes que as abordagens simples.

[1]  David E. Culler,et al.  A transmission control scheme for media access in sensor networks , 2001, MobiCom '01.

[2]  James J. Filliben,et al.  NIST/SEMATECH e-Handbook of Statistical Methods; Chapter 1: Exploratory Data Analysis , 2003 .

[3]  Deborah Estrin,et al.  Next Century Challenges: Mobile Networking for Smart Dust , 1999, MobiCom 1999.

[4]  George E. P. Box,et al.  Time Series Analysis: Forecasting and Control , 1977 .

[5]  Gregory J. Pottie,et al.  Wireless integrated network sensors , 2000, Commun. ACM.

[6]  Mani B. Srivastava,et al.  SensorSim: a simulation framework for sensor networks , 2000, MSWIM '00.

[7]  Wendi B. Heinzelman,et al.  Adaptive protocols for information dissemination in wireless sensor networks , 1999, MobiCom.

[8]  Deborah Estrin,et al.  Directed diffusion: a scalable and robust communication paradigm for sensor networks , 2000, MobiCom '00.

[9]  G. Asada,et al.  Wireless integrated network sensors: Low power systems on a chip , 1998, Proceedings of the 24th European Solid-State Circuits Conference.

[10]  Richard A. Davis,et al.  Introduction to time series and forecasting , 1998 .

[11]  C. E. Mccorkle School is a Business , 1919 .

[12]  Wendi B. Heinzelman,et al.  Negotiation-Based Protocols for Disseminating Information in Wireless Sensor Networks , 2002, Wirel. Networks.

[13]  Deborah Estrin,et al.  Residual Energy Scans for Monitoring Wireless Sensor Networks , 2002 .

[14]  David E. Culler,et al.  System architecture directions for networked sensors , 2000, SIGP.

[15]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1971 .

[16]  Jan M. Rabaey,et al.  PicoRadio Supports Ad Hoc Ultra-Low Power Wireless Networking , 2000, Computer.

[17]  Elizabeth M. Belding-Royer,et al.  A review of current routing protocols for ad hoc mobile wireless networks , 1999, IEEE Wirel. Commun..

[18]  Gregory J. Pottie,et al.  Protocols for self-organization of a wireless sensor network , 2000, IEEE Wirel. Commun..

[19]  Deborah Estrin,et al.  Impact of network density on data aggregation in wireless sensor networks , 2002, Proceedings 22nd International Conference on Distributed Computing Systems.