Partial Compilation of Variational Algorithms for Noisy Intermediate-Scale Quantum Machines

Quantum computing is on the cusp of reality with Noisy Intermediate-Scale Quantum (NISQ) machines currently under development and testing. Some of the most promising algorithms for these machines are variational algorithms that employ classical optimization coupled with quantum hardware to evaluate the quality of each candidate solution. Recent work used GRadient Descent Pulse Engineering (GRAPE) to translate quantum programs into highly optimized machine control pulses, resulting in a significant reduction in the execution time of programs. This is critical, as quantum machines can barely support the execution of short programs before failing. However, GRAPE suffers from high compilation latency, which is untenable in variational algorithms since compilation is interleaved with computation. We propose two strategies for partial compilation, exploiting the structure of variational circuits to pre-compile optimal pulses for specific blocks of gates. Our results indicate significant pulse speedups ranging from 1.5x-3x in typical benchmarks, with only a small fraction of the compilation latency of GRAPE.

[1]  A. Harrow,et al.  Quantum Supremacy through the Quantum Approximate Optimization Algorithm , 2016, 1602.07674.

[2]  Frederic T. Chong,et al.  QuRE: The Quantum Resource Estimator toolbox , 2013, 2013 IEEE 31st International Conference on Computer Design (ICCD).

[3]  Seth Lloyd,et al.  Efficient implementation of unitary transformations , 2019, 1901.03431.

[4]  Frederic T. Chong,et al.  Comparing the Overhead of Topological and Concatenated Quantum Error Correction , 2013, 1312.2316.

[5]  A N Cleland,et al.  Qubit Architecture with High Coherence and Fast Tunable Coupling. , 2014, Physical review letters.

[6]  Stephen Brierley,et al.  A Generalised Variational Quantum Eigensolver , 2018 .

[7]  Dmitri Maslov,et al.  Ground-state energy estimation of the water molecule on a trapped ion quantum computer , 2019, ArXiv.

[8]  Martin Rötteler,et al.  Q#: Enabling Scalable Quantum Computing and Development with a High-level DSL , 2018, RWDSL2018.

[9]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[10]  S. Lloyd Quantum approximate optimization is computationally universal , 2018, 1812.11075.

[11]  Chen-Fu Chiang,et al.  Scaffold: Quantum Programming Language , 2012 .

[12]  D. Schuster,et al.  Speedup for quantum optimal control from automatic differentiation based on graphics processing units , 2016, 1612.04929.

[13]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[14]  Blake R. Johnson,et al.  Unsupervised Machine Learning on a Hybrid Quantum Computer , 2017, 1712.05771.

[15]  Xiang Fu,et al.  eQASM: An Executable Quantum Instruction Set Architecture , 2018, ArXiv.

[16]  R. Bartlett,et al.  Coupled-cluster theory in quantum chemistry , 2007 .

[17]  Timo O. Reiss,et al.  Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. , 2005, Journal of magnetic resonance.

[18]  H. Eyring The Activated Complex in Chemical Reactions , 1935 .

[19]  D. Schuster,et al.  Gradient-based optimal control of open quantum systems using quantum trajectories and automatic differentiation , 2019, Physical Review A.

[20]  Frederic T. Chong,et al.  Quantum rotations: a case study in static and dynamic machine-code generation for quantum computers , 2013, ISCA.

[21]  H. Neven,et al.  Digitized adiabatic quantum computing with a superconducting circuit. , 2015, Nature.

[22]  Benoît Valiron,et al.  Quipper: a scalable quantum programming language , 2013, PLDI.

[23]  Alán Aspuru-Guzik,et al.  On the Chemical Basis of Trotter-Suzuki Errors in Quantum Chemistry Simulation , 2014, 1410.8159.

[24]  Ivano Tavernelli,et al.  Quantum algorithms for electronic structure calculations: Particle-hole Hamiltonian and optimized wave-function expansions , 2018, Physical Review A.

[25]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[26]  Henry Hoffmann,et al.  Optimized Compilation of Aggregated Instructions for Realistic Quantum Computers , 2019, ASPLOS.

[27]  Thomas Alexander,et al.  Qiskit Backend Specifications for OpenQASM and OpenPulse Experiments , 2018, ArXiv.

[28]  Christiane P. Koch,et al.  Training Schrödinger’s cat: quantum optimal control , 2015, 1508.00442.

[29]  Matthias Troyer,et al.  ProjectQ: An Open Source Software Framework for Quantum Computing , 2016, ArXiv.

[30]  S. Glaser,et al.  Second order gradient ascent pulse engineering. , 2011, Journal of magnetic resonance.

[31]  Hsi-Sheng Goan,et al.  Optimal control of fast and high-fidelity quantum gates with electron and nuclear spins of a nitrogen-vacancy center in diamond , 2015, 1504.06385.

[32]  Earl T. Campbell,et al.  Quantum computation with realistic magic-state factories , 2016, 1605.07197.

[33]  Sandeep Sharma,et al.  PySCF: the Python‐based simulations of chemistry framework , 2018 .

[34]  J. McClean,et al.  Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz , 2017, Quantum Science and Technology.

[35]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[36]  Alán Aspuru-Guzik,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[37]  Jan Meijer,et al.  High-fidelity spin entanglement using optimal control , 2013, Nature Communications.

[38]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[39]  Kevin Leyton-Brown,et al.  Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms , 2012, KDD.

[40]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[41]  Alán Aspuru-Guzik,et al.  Variational Quantum Factoring , 2018, QTOP@NetSys.

[42]  Andrew W. Cross,et al.  Quantum optimization using variational algorithms on near-term quantum devices , 2017, Quantum Science and Technology.

[43]  Jens Koch,et al.  Gradient-based optimal control of open systems using quantum trajectories and automatic differentiation , 2019 .

[44]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[45]  Alán Aspuru-Guzik,et al.  Quantum computational chemistry , 2018, Reviews of Modern Physics.

[46]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[47]  William J. Zeng,et al.  A Practical Quantum Instruction Set Architecture , 2016, ArXiv.

[48]  Margaret Martonosi,et al.  ScaffCC: a framework for compilation and analysis of quantum computing programs , 2014, Conf. Computing Frontiers.

[49]  Achille Fokoue,et al.  An effective algorithm for hyperparameter optimization of neural networks , 2017, IBM J. Res. Dev..

[50]  Hauke Paulsen,et al.  Density Functional Theory Calculations for Spin Crossover Complexes , 2004 .

[51]  Krysta Marie Svore,et al.  LIQUi|>: A Software Design Architecture and Domain-Specific Language for Quantum Computing , 2014, ArXiv.

[52]  Gavin E. Crooks,et al.  Performance of the Quantum Approximate Optimization Algorithm on the Maximum Cut Problem , 2018, 1811.08419.

[53]  J. Gambetta,et al.  Efficient Z gates for quantum computing , 2016, 1612.00858.