Higher-order modification of Steffensen’s method for solving system of nonlinear equations

[1]  V. Kanwar,et al.  A stable class of improved second-derivative free Chebyshev-Halley type methods with optimal eighth order convergence , 2016, Numerical Algorithms.

[2]  J. A. Ezquerro,et al.  On a Steffensen-like method for solving nonlinear equations , 2016 .

[3]  Á. Alberto Magreñán,et al.  Local convergence and a chemical application of derivative free root finding methods with one parameter based on interpolation , 2016, Journal of Mathematical Chemistry.

[4]  Alicia Cordero,et al.  A stable class of improved second-derivative free Chebyshev-Halley type methods with optimal eighth order convergence , 2015, Numerical Algorithms.

[5]  Xiaofeng Wang,et al.  Seventh-order derivative-free iterative method for solving nonlinear systems , 2015, Numerical Algorithms.

[6]  J. A. Ezquerro,et al.  A family of iterative methods that uses divided differences of first and second orders , 2015, Numerical Algorithms.

[7]  S. Amat,et al.  On a Moser–Steffensen Type Method for Nonlinear Systems of Equations , 2015, 1506.05253.

[8]  Ángel Alberto Magreñán,et al.  A variant of Steffensen-King's type family with accelerated sixth-order convergence and high efficiency index: Dynamic study and approach , 2015, Appl. Math. Comput..

[9]  J. Sharma,et al.  A novel derivative free algorithm with seventh order convergence for solving systems of nonlinear equations , 2014, Numerical Algorithms.

[10]  Xiaofeng Wang,et al.  A family of Steffensen type methods with seventh-order convergence , 2013, Numerical Algorithms.

[11]  Miquel Grau-Sánchez,et al.  Ostrowski type methods for solving systems of nonlinear equations , 2011, Appl. Math. Comput..

[12]  Sergio Amat,et al.  On the approximation of derivatives using divided difference operators preserving the local convergence order of iterative methods , 2011, J. Comput. Appl. Math..

[13]  Peng Zhao,et al.  A variant of Steffensen's method of fourth-order convergence and its applications , 2010, Appl. Math. Comput..

[14]  Alicia Cordero,et al.  Iterative methods of order four and five for systems of nonlinear equations , 2009, J. Comput. Appl. Math..

[15]  J. A. Ezquerro,et al.  New iterations of R-order four with reduced computational cost , 2009 .

[16]  Hongmin Ren,et al.  A class of two-step Steffensen type methods with fourth-order convergence , 2009, Appl. Math. Comput..

[17]  Vincent Lefèvre,et al.  MPFR: A multiple-precision binary floating-point library with correct rounding , 2007, TOMS.

[18]  Ali Barati,et al.  A third-order Newton-type method to solve systems of nonlinear equations , 2007, Appl. Math. Comput..

[19]  Yitian Li,et al.  Efficient continuation Newton-like method for solving systems of non-linear equations , 2006, Appl. Math. Comput..

[20]  M. A. Hernández Second-Derivative-Free Variant of the Chebyshev Method for Nonlinear Equations , 2000 .

[21]  J. M. Gutiérrez,et al.  A family of Chebyshev-Halley type methods in Banach spaces , 1997, Bulletin of the Australian Mathematical Society.

[22]  Á. Alberto Magreñán,et al.  Improving the Dynamics of Steffensen-type Methods , 2015 .

[23]  José Luis Díaz-Barrero,et al.  On the local convergence of a family of two-step iterative methods for solving nonlinear equations , 2014, J. Comput. Appl. Math..

[24]  Janak Raj Sharma,et al.  AN EFFICIENT DERIVATIVE FREE ITERATIVE METHOD FOR SOLVING SYSTEMS OF NONLINEAR EQUATIONS , 2013 .

[25]  Miquel Grau-Sánchez,et al.  Frozen divided difference scheme for solving systems of nonlinear equations , 2011, J. Comput. Appl. Math..

[26]  J. F. Steffensen Remarks on iteration. , 1933 .