Dynamic analysis of complex multibody systems using methods for differential-algebraic equations

A general approach to the numerical simulation of complex multibody systems is presented which accomodates kinematical loops and rigid as well as flexible bodies. Key elements are the use of direct methods for differential-algebraic equations and the implementation as a toolkit using the object-oriented language C++. Within this framework it is possible to use different methods of formulating multibody systems and to easily introduce new types of components or new numerical methods.

[1]  B. Leimkuhler,et al.  Numerical solution of differential-algebraic equations for constrained mechanical motion , 1991 .

[2]  C. W. Gear,et al.  Differential-algebraic equations index transformations , 1988 .

[3]  M. Hiller,et al.  Numerical simulation of mechanical systems using methods for differential‐algebraic equations , 1991 .

[4]  R. F. Sincovec,et al.  Analysis of descriptor systems using numerical algorithms , 1981 .

[5]  M. Géradin,et al.  Modelling of superelements in mechanism analysis , 1991 .

[6]  Parviz E. Nikravesh,et al.  Systematic Construction of the Equations of Motion for Multibody Systems Containing Closed Kinematic Loops , 1989 .

[7]  M. Otter,et al.  Ein objektorientiertes Datenmodell zur Beschreibung von Mehrkörpersystemen unter Verwendung von RSYST , 1990 .

[8]  J. C. Simo,et al.  A finite strain beam formulation. The three-dimensional dynamic problem. Part I , 1985 .

[9]  Parviz E. Nikravesh,et al.  Computer-aided analysis of mechanical systems , 1988 .

[10]  Bjarne Stroustrup,et al.  C++ Programming Language , 1986, IEEE Softw..

[11]  E. Haug,et al.  Generalized Coordinate Partitioning for Dimension Reduction in Analysis of Constrained Dynamic Systems , 1982 .

[12]  Ernst Hairer,et al.  The numerical solution of differential-algebraic systems by Runge-Kutta methods , 1989 .

[13]  J. Wittenburg,et al.  Dynamics of systems of rigid bodies , 1977 .

[14]  Linda R. Petzold,et al.  Numerical solution of initial-value problems in differential-algebraic equations , 1996, Classics in applied mathematics.