Moving Mesh Methods for Computational Fluid Dynamics

In this paper we will discuss a class of adaptive grid methods called moving mesh method (MMM). Some recent progress of the moving mesh methods will be reviewed. In particular, we review their applications to computational fluid dynamics.

[1]  Natalia Kopteva Maximum Norm A Posteriori Error Estimates for a One-Dimensional Convection-Diffusion Problem , 2001, SIAM J. Numer. Anal..

[2]  D. A. Anderson Adaptive mesh schemes based on grid speeds , 1983 .

[3]  Weizhang Huang,et al.  Analysis Of Moving Mesh Partial Differential Equations With Spatial Smoothing , 1997 .

[4]  Mike J. Baines,et al.  Grid adaptation via node movement , 1998 .

[5]  J. Flaherty,et al.  A two-dimensional mesh moving technique for time-dependent partial differential equations , 1986 .

[6]  Boris N. Azarenok,et al.  Variational Barrier Method of Adaptive Grid Generation in Hyperbolic Problems of Gas Dynamics , 2002, SIAM J. Numer. Anal..

[7]  Weizhang Huang,et al.  Moving mesh partial differential equations (MMPDES) based on the equidistribution principle , 1994 .

[8]  R Keppens,et al.  Adaptive Method of Lines for MagnetoHydrodynamic PDE Models , 2001 .

[9]  H. Reed,et al.  Application of a solution-adaptive method to fluid flow: Line and arclength approach , 1994 .

[10]  Huazhong Tang Solution of the shallow‐water equations using an adaptive moving mesh method , 2004 .

[11]  L. Petzold,et al.  Moving Mesh Methods with Upwinding Schemes for Time-Dependent PDEs , 1997 .

[12]  Desheng Wang,et al.  A three-dimensional adaptive method based on the iterative grid redistribution , 2004 .

[13]  Pingwen Zhang,et al.  A Moving Mesh Finite Element Algorithm for Singular Problems in Two and Three Space Dimensions , 2002 .

[14]  A Lagrangian Moving Finite Element Method incorporating Monitor Functions , 2003 .

[15]  S. Osher,et al.  A Level Set Formulation of Eulerian Interface Capturing Methods for Incompressible Fluid Flows , 1996 .

[16]  Vassili S. Sochnikov,et al.  Level set calculations of the evolution of boundaries on a dynamically adaptive grid , 2003 .

[17]  Centro internazionale matematico estivo. Session,et al.  Advanced Numerical Approximation of Nonlinear Hyperbolic Equations , 1998 .

[18]  Guojun Liao,et al.  A moving grid finite‐element method using grid deformation , 1995 .

[19]  Robert D. Russell,et al.  Moving Mesh Techniques Based upon Equidistribution, and Their Stability , 1992, SIAM J. Sci. Comput..

[20]  Robert D. Russell,et al.  A Study of Monitor Functions for Two-Dimensional Adaptive Mesh Generation , 1999, SIAM J. Sci. Comput..

[21]  V. M. Fomin,et al.  Methods for the construction of moving grids for problems of fluid dynamics with big deformations , 1976 .

[22]  A. Dvinsky Adaptive grid generation from harmonic maps on Reimannian manifolds , 1991 .

[23]  Weizhang Huang,et al.  Moving Mesh Methods Based on Moving Mesh Partial Differential Equations , 1994 .

[24]  Tao Tang,et al.  An adaptive mesh redistribution algorithm for convection-dominated problems , 2002 .

[25]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .

[26]  J. Hansen,et al.  Review of some adaptive node-movement techniques in finite-element and finite-difference solutions of partial differential equations , 1991 .

[27]  A. van Dam A Moving Mesh Finite Volume Solver for Macroscopic Traffic Flow Models , 2002 .

[28]  Feng Liu,et al.  An Adaptive Grid Method and Its Application to Steady Euler Flow Calculations , 1998, SIAM J. Sci. Comput..

[29]  Hector D. Ceniceros A semi-implicit moving mesh method for the focusing nonlinear Schrödinger equation , 2001 .

[30]  Tao Tang,et al.  Numerical solution of a singularly perturbed two-point boundary value problem using equidistribution: analysis of convergence , 2000 .

[31]  Y. Tourigny,et al.  A New Moving Mesh Algorithm for the Finite Element Solution of Variational Problems , 1998 .

[32]  R. Hindman,et al.  A new approach to truly adaptive grid generation , 1983 .

[33]  Dale A. Anderson Equidistribution schemes, poisson generators, and adaptive grids , 1987 .

[34]  Joke Blom,et al.  A moving grid method for one-dimensional PDEs based on the method of lines , 1988 .

[35]  Pingwen Zhang,et al.  Moving mesh methods in multiple dimensions based on harmonic maps , 2001 .

[36]  Jean-François Remacle,et al.  An Adaptive Discontinuous Galerkin Technique with an Orthogonal Basis Applied to Compressible Flow Problems , 2003, SIAM Rev..

[37]  Weizhang Huang,et al.  Variational mesh adaptation: isotropy and equidistribution , 2001 .

[38]  Zhengru Zhang Moving mesh methods for convection-dominated equations and nonlinear conservation laws , 2003 .

[39]  Ami Harten,et al.  Self adjusting grid methods for one-dimensional hyperbolic conservation laws☆ , 1983 .

[40]  Tao Tang,et al.  Adaptive Mesh Redistibution Method Based on Godunov's Scheme , 2003 .

[41]  Paul A. Zegeling,et al.  On Resistive MHD Models with Adaptive Moving Meshes , 2005, J. Sci. Comput..

[42]  Weizhang Huang Practical aspects of formulation and solution of moving mesh partial differential equations , 2001 .

[43]  J. Brackbill,et al.  Adaptive zoning for singular problems in two dimensions , 1982 .

[44]  Richard S. Hamilton,et al.  Harmonic Maps of Manifolds with Boundary , 1975 .

[45]  Randolph E. Bank,et al.  Symmetric Error Estimates for Moving Mesh Mixed Methods for Advection-Diffusion Equations , 2002, SIAM J. Numer. Anal..

[46]  Shing-Tung Yau,et al.  On univalent harmonic maps between surfaces , 1978 .

[47]  Tao Tang,et al.  Second-order Godunov-type scheme for reactive flow calculations on moving meshes , 2005 .

[48]  E. Dorfi,et al.  Simple adaptive grids for 1-d initial value problems , 1987 .

[49]  Ramesh Nallapati,et al.  A moving unstructured staggered mesh method for the simulation of incompressible free-surface flows , 2003 .

[50]  John M. Stockie,et al.  A Moving Mesh Method for One-dimensional Hyperbolic Conservation Laws , 2000, SIAM J. Sci. Comput..

[51]  Ruo Li,et al.  On Multi-Mesh H-Adaptive Methods , 2005, J. Sci. Comput..

[52]  Tao Tang,et al.  Adaptive Mesh Methods for One- and Two-Dimensional Hyperbolic Conservation Laws , 2003, SIAM J. Numer. Anal..

[53]  Thomas Y. Hou,et al.  An efficient dynamically adaptive mesh for potentially singular solutions , 2001 .

[54]  Yuhe Ren Theory and computation of moving mesh methods for solving time-dependent partial differential equations , 1991 .

[55]  Torsten Linß Uniform Pointwise Convergence of Finite Difference Schemes Using Grid Equidistribution , 2001, Computing.

[56]  C. D. Boor,et al.  Good approximation by splines with variable knots. II , 1974 .

[57]  Zhijun Tan,et al.  A simple moving mesh method for one-and two-dimensional phase-field equations , 2006 .

[58]  J. Sethian,et al.  FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .

[59]  Pattern formation in the 1-D Gray-Scott model , 1996 .

[60]  M. Minion,et al.  Performance of Under-resolved Two-Dimensional Incompressible Flow , 1995 .

[61]  Robert D. Russell,et al.  Moving Mesh Methods for Problems with Blow-Up , 1996, SIAM J. Sci. Comput..

[62]  Pingwen Zhang,et al.  An adaptive mesh redistribution method for nonlinear Hamilton--Jacobi equations in two-and three-dimensions , 2003 .

[63]  John A. Mackenzie,et al.  The Numerical Solution of One-Dimensional Phase Change Problems Using an Adaptive Moving Mesh Method , 2000 .

[64]  Yingjie Liu,et al.  Symmetric Error Estimates for Moving Mesh Galerkin Methods for Advection-Diffusion Equations , 2002, SIAM J. Numer. Anal..

[65]  Shengtai Li,et al.  Stability of Moving Mesh Systems of Partial Differential Equations , 1998, SIAM J. Sci. Comput..

[66]  Weizhang Huang,et al.  Variational mesh adaptation II: error estimates and monitor functions , 2003 .

[67]  Ruo Li,et al.  Adaptive Finite Element Approximation for Distributed Elliptic Optimal Control Problems , 2002, SIAM J. Control. Optim..

[68]  George Beckett,et al.  Convergence analysis of finite difference approximations on equidistributed grids to a singularly perturbed boundary value problem , 2000 .

[69]  C. Munz,et al.  Numerical simulations of nonstationary fronts and interfaces by the Godunov method in moving grids , 1996 .

[70]  Weiqing Ren,et al.  An Iterative Grid Redistribution Method for Singular Problems in Multiple Dimensions , 2000 .

[71]  Natalia Kopteva,et al.  A Robust Adaptive Method for a Quasi-Linear One-Dimensional Convection-Diffusion Problem , 2001, SIAM J. Numer. Anal..

[72]  Ue-Li Pen,et al.  A High-Resolution Adaptive Moving Mesh Hydrodynamic Algorithm , 1997, astro-ph/9704258.

[73]  K. Liang,et al.  A Splitting Moving Mesh Method for 3-D Quenching and Blow-Up Problems , 2005 .

[74]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[75]  Ruo Li,et al.  Moving Mesh Discontinuous Galerkin Method for Hyperbolic Conservation Laws , 2006, J. Sci. Comput..