Highly efficient heralding of entangled single photons.
暂无分享,去创建一个
Jörn Beyer | Marissa Giustina | Rupert Ursin | Sae Woo Nam | Alexandra Mech | Anton Zeilinger | Thomas Gerrits | Sven Ramelow | Witlef Wieczorek | Simon Gröblacher | Adriana Lita | Brice Calkins | A. Zeilinger | R. Ursin | S. Ramelow | A. Lita | T. Gerrits | S. Nam | W. Wieczorek | M. Giustina | B. Calkins | J. Beyer | S. Gröblacher | A. Mech
[1] H. Bechmann-Pasquinucci,et al. Quantum cryptography , 2001, quant-ph/0101098.
[2] J. D. Franson,et al. Single photons on pseudodemand from stored parametric down-conversion , 2002, quant-ph/0205103.
[3] Alexander V. Sergienko,et al. Absolute detector quantum-efficiency measurements using correlated photons , 1995 .
[4] P. Kwiat,et al. Absolute efficiency and time-response measurement of single-photon detectors. , 1994, Applied optics.
[5] A. Zeilinger,et al. Local deterministic description of Einstein-Podolsky-Rosen experiments , 1988 .
[6] Christine Silberhorn,et al. High-performance single-photon generation with commercial-grade optical fiber , 2010, 1012.1821.
[7] Sae Woo Nam,et al. Conclusive quantum steering with superconducting transition-edge sensors , 2011, Nature Communications.
[8] Ryan S. Bennink,et al. Optimal collinear Gaussian beams for spontaneous parametric down-conversion , 2010, 1003.3810.
[9] Thomas Jennewein,et al. A wavelength-tunable fiber-coupled source of narrowband entangled photons. , 2007, Optics express.
[10] A. Shimony,et al. Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .
[11] D. Drung,et al. Highly Sensitive and Easy-to-Use SQUID Sensors , 2007, IEEE Transactions on Applied Superconductivity.
[12] Gilles Brassard,et al. Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.
[13] V. Scarani,et al. The security of practical quantum key distribution , 2008, 0802.4155.
[14] Marco Fiorentino,et al. Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer , 2006, QELS 2006.
[15] Shih,et al. New high-intensity source of polarization-entangled photon pairs. , 1995, Physical review letters.
[16] Aaron J. Miller,et al. Counting near-infrared single-photons with 95% efficiency. , 2008, Optics express.
[17] Rupert Ursin,et al. Loophole-free Einstein–Podolsky–Rosen experiment via quantum steering , 2011, 1111.0760.
[18] P R Tapster,et al. Absolute measurement of detector quantum efficiency using parametric downconversion. , 1987, Applied optics.
[19] V. Scarani,et al. One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering , 2011, 1109.1435.
[20] Aaron J. Miller,et al. Noise-free high-efficiency photon-number-resolving detectors , 2005, quant-ph/0506175.
[21] Jeffrey H Shapiro,et al. On-demand single-photon generation using a modular array of parametric downconverters with electro-optic polarization controls. , 2007, Optics letters.
[22] Archil Avaliani,et al. Quantum Computers , 2004, ArXiv.
[23] H. Weinfurter,et al. Collinear source of polarization-entangled photon pairs at nondegenerate wavelengths , 2008, 0804.3799.
[24] G Brida,et al. Self consistent, absolute calibration technique for photon number resolving detectors. , 2011, Optics express.
[25] H. Briegel,et al. Measurement-based quantum computation on cluster states , 2003, quant-ph/0301052.
[26] K. Irwin. An application of electrothermal feedback for high resolution cryogenic particle detection , 1995 .
[27] Pedram Khalili Amiri,et al. Quantum computers , 2003 .
[28] Taehyun Kim,et al. Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.
[29] G. Milburn,et al. Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.
[30] E. Jeffrey,et al. Towards a periodic deterministic source of arbitrary single-photon states , 2004 .
[31] Taro Itatani,et al. Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling. , 2011, Optics express.
[32] D. Branning,et al. Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source , 2002, quant-ph/0205140.
[33] Sae Woo Nam,et al. Compact cryogenic self-aligning fiber-to-detector coupling with losses below one percent. , 2011, Optics express.
[34] Todd A. Brun,et al. Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.
[35] H. Weinfurter,et al. Multiphoton entanglement and interferometry , 2003, 0805.2853.