Highly efficient heralding of entangled single photons.

Single photons are an important prerequisite for a broad spectrum of quantum optical applications. We experimentally demonstrate a heralded single-photon source based on spontaneous parametric down-conversion in collinear bulk optics, and fiber-coupled bolometric transition-edge sensors. Without correcting for background, losses, or detection inefficiencies, we measure an overall heralding efficiency of 83%. By violating a Bell inequality, we confirm the single-photon character and high-quality entanglement of our heralded single photons which, in combination with the high heralding efficiency, are a necessary ingredient for advanced quantum communication protocols such as one-sided device-independent quantum key distribution.

[1]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[2]  J. D. Franson,et al.  Single photons on pseudodemand from stored parametric down-conversion , 2002, quant-ph/0205103.

[3]  Alexander V. Sergienko,et al.  Absolute detector quantum-efficiency measurements using correlated photons , 1995 .

[4]  P. Kwiat,et al.  Absolute efficiency and time-response measurement of single-photon detectors. , 1994, Applied optics.

[5]  A. Zeilinger,et al.  Local deterministic description of Einstein-Podolsky-Rosen experiments , 1988 .

[6]  Christine Silberhorn,et al.  High-performance single-photon generation with commercial-grade optical fiber , 2010, 1012.1821.

[7]  Sae Woo Nam,et al.  Conclusive quantum steering with superconducting transition-edge sensors , 2011, Nature Communications.

[8]  Ryan S. Bennink,et al.  Optimal collinear Gaussian beams for spontaneous parametric down-conversion , 2010, 1003.3810.

[9]  Thomas Jennewein,et al.  A wavelength-tunable fiber-coupled source of narrowband entangled photons. , 2007, Optics express.

[10]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[11]  D. Drung,et al.  Highly Sensitive and Easy-to-Use SQUID Sensors , 2007, IEEE Transactions on Applied Superconductivity.

[12]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[13]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[14]  Marco Fiorentino,et al.  Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer , 2006, QELS 2006.

[15]  Shih,et al.  New high-intensity source of polarization-entangled photon pairs. , 1995, Physical review letters.

[16]  Aaron J. Miller,et al.  Counting near-infrared single-photons with 95% efficiency. , 2008, Optics express.

[17]  Rupert Ursin,et al.  Loophole-free Einstein–Podolsky–Rosen experiment via quantum steering , 2011, 1111.0760.

[18]  P R Tapster,et al.  Absolute measurement of detector quantum efficiency using parametric downconversion. , 1987, Applied optics.

[19]  V. Scarani,et al.  One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering , 2011, 1109.1435.

[20]  Aaron J. Miller,et al.  Noise-free high-efficiency photon-number-resolving detectors , 2005, quant-ph/0506175.

[21]  Jeffrey H Shapiro,et al.  On-demand single-photon generation using a modular array of parametric downconverters with electro-optic polarization controls. , 2007, Optics letters.

[22]  Archil Avaliani,et al.  Quantum Computers , 2004, ArXiv.

[23]  H. Weinfurter,et al.  Collinear source of polarization-entangled photon pairs at nondegenerate wavelengths , 2008, 0804.3799.

[24]  G Brida,et al.  Self consistent, absolute calibration technique for photon number resolving detectors. , 2011, Optics express.

[25]  H. Briegel,et al.  Measurement-based quantum computation on cluster states , 2003, quant-ph/0301052.

[26]  K. Irwin An application of electrothermal feedback for high resolution cryogenic particle detection , 1995 .

[27]  Pedram Khalili Amiri,et al.  Quantum computers , 2003 .

[28]  Taehyun Kim,et al.  Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[29]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[30]  E. Jeffrey,et al.  Towards a periodic deterministic source of arbitrary single-photon states , 2004 .

[31]  Taro Itatani,et al.  Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling. , 2011, Optics express.

[32]  D. Branning,et al.  Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source , 2002, quant-ph/0205140.

[33]  Sae Woo Nam,et al.  Compact cryogenic self-aligning fiber-to-detector coupling with losses below one percent. , 2011, Optics express.

[34]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[35]  H. Weinfurter,et al.  Multiphoton entanglement and interferometry , 2003, 0805.2853.