2D Multilevel Model for Flood Wave Propagation in Flood-Affected Areas
暂无分享,去创建一个
[1] T. Narasimhan,et al. AN INTEGRATED FINITE DIFFERENCE METHOD FOR ANALYZING FLUID FLOW IN POROUS MEDIA , 1976 .
[2] R. L. Cooley,et al. Finite Element Solution of Saint-Venant Equations , 1976 .
[3] N. Katopodes,et al. END DEPTH UNDER ZERO-INERTIA CONDITIONS , 1977 .
[4] C. Brebbia,et al. Finite Element Techniques for Fluid Flow , 1977 .
[5] N. Katopodes,et al. Computing Two-Dimensional Dam-Break Flood Waves , 1978 .
[6] G. Pinder,et al. Computational Methods in Subsurface Flow , 1983 .
[7] N. Katopodes. A Dissipative Galerkin Scheme for Open‐Channel Flow , 1984 .
[8] Abioala A. Akanbi,et al. Model for Flood Propagation on Initially Dry Land , 1988 .
[9] D. Goodrich,et al. Kinematic routing using finite elements on a triangular irregular network , 1991 .
[10] Eve L. Kuniansky,et al. Finite-Element Mesh Generation from Mappable Features , 1993, Int. J. Geogr. Inf. Sci..
[11] R. Szymkiewicz. Oscillation‐Free Solution of Shallow Water Equations for Nonstaggered Grid , 1993 .
[12] G. Gottardi,et al. A control-volume finite-element model for two-dimensional overland flow , 1993 .
[13] A. Defina,et al. A New Set of Equations for Very Shallow Water and Partially Dry Areas Suitable to 2D Numerical Models , 1994 .
[14] G. L. Guymon,et al. Diffusion Hydrodynamic Model of Shallow Estuary , 1994 .