The Response of Balanced Hurricanes to Local Sources of Heat and Momentum

Abstract Eliassen's (1951) diagnostic technique is used to calculate the secondary circulation induced by point sources of heat and momentum in balanced, hurricane-like vortices. Scale analysis reveals that such responses are independent of the horizontal scale of the vortex. Analytic solutions for the secondary circulation are readily obtained in idealized barotropic vortices, but numerical methods are required for more realistic barotropic and baroclinic vortices. For sources near the radius of maximum wind, the local, two-dimensional, streamfunction dipole response of Eliassen is modified by both the spatial variations of the vortex structure and the influences of boundary conditions. The secondary flow advects mean-flow buoyancy and angular momentum and thus leads to a slow evolution of the vortex structure. In weak systems (maximum tangential wind <35 m s−1), the restraining influences of structure and boundaries lengthen the time scale of the vortex evolution. In stronger vortices, the horizontal sc...