Dynamical systems‐based optimal control of incompressible fluids

For optimal control problems related to fluid flow the choice of an adequate cost functional for suppression of vortices is of significant importance. In this research we propose a cost functional based on a local dynamical systems characterization of vortices. The resulting functional is a non‐convex function of the velocity gradient tensor. The resulting optimality system describing first order necessary optimality conditions is derived, a possible strategy for numerical realization of the optimal control problem is provided and a numerical feasibility study is conducted. Copyright © 2004 John Wiley & Sons, Ltd.

[1]  Philip E. Gill,et al.  Practical optimization , 1981 .

[2]  U. Ghia,et al.  High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .

[3]  M. Powell Nonconvex minimization calculations and the conjugate gradient method , 1984 .

[4]  M. S. Chong,et al.  A Description of Eddying Motions and Flow Patterns Using Critical-Point Concepts , 1987 .

[5]  M. S. Chong,et al.  A general classification of three-dimensional flow fields , 1990 .

[6]  R. Temam,et al.  On some control problems in fluid mechanics , 1990 .

[7]  Jorge Nocedal,et al.  Global Convergence Properties of Conjugate Gradient Methods for Optimization , 1992, SIAM J. Optim..

[8]  E. Casas Optimality Conditions for Some Control Problems of Turbulent Flows , 1995 .

[9]  Jinhee Jeong,et al.  On the identification of a vortex , 1995, Journal of Fluid Mechanics.

[10]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[11]  B. Cantwell,et al.  Topology of fine-scale motions in turbulent channel flow , 1996, Journal of Fluid Mechanics.

[12]  Louis N. Cattafesta,et al.  Active Control of Flow-Induced Cavity Resonance , 1997 .

[13]  Martin Berggren,et al.  Numerical Solution of a Flow-Control Problem: Vorticity Reduction by Dynamic Boundary Action , 1998, SIAM J. Sci. Comput..

[14]  Eugene M. Cliff,et al.  Computational Methods for Optimal Design and Control , 1998 .

[15]  C. Geiger,et al.  Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben , 1999 .

[16]  Thomas Bewley,et al.  Flow control: new challenges for a new Renaissance , 2001 .

[17]  H. Park,et al.  Boundary optimal control of the Navier-Stokes equations: a numerical approach , 2002 .