Dynamical systems‐based optimal control of incompressible fluids
暂无分享,去创建一个
[1] Philip E. Gill,et al. Practical optimization , 1981 .
[2] U. Ghia,et al. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .
[3] M. Powell. Nonconvex minimization calculations and the conjugate gradient method , 1984 .
[4] M. S. Chong,et al. A Description of Eddying Motions and Flow Patterns Using Critical-Point Concepts , 1987 .
[5] M. S. Chong,et al. A general classification of three-dimensional flow fields , 1990 .
[6] R. Temam,et al. On some control problems in fluid mechanics , 1990 .
[7] Jorge Nocedal,et al. Global Convergence Properties of Conjugate Gradient Methods for Optimization , 1992, SIAM J. Optim..
[8] E. Casas. Optimality Conditions for Some Control Problems of Turbulent Flows , 1995 .
[9] Jinhee Jeong,et al. On the identification of a vortex , 1995, Journal of Fluid Mechanics.
[10] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[11] B. Cantwell,et al. Topology of fine-scale motions in turbulent channel flow , 1996, Journal of Fluid Mechanics.
[12] Louis N. Cattafesta,et al. Active Control of Flow-Induced Cavity Resonance , 1997 .
[13] Martin Berggren,et al. Numerical Solution of a Flow-Control Problem: Vorticity Reduction by Dynamic Boundary Action , 1998, SIAM J. Sci. Comput..
[14] Eugene M. Cliff,et al. Computational Methods for Optimal Design and Control , 1998 .
[15] C. Geiger,et al. Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben , 1999 .
[16] Thomas Bewley,et al. Flow control: new challenges for a new Renaissance , 2001 .
[17] H. Park,et al. Boundary optimal control of the Navier-Stokes equations: a numerical approach , 2002 .