Identifying topological order by entanglement entropy

Topological entanglement entropy provides a robust measure for detecting the long-range entanglement that characterizes quantum ground states displaying topological order. A new method for calculating this entropy isolates minimally entangled states from the ground states of a topological phase—offering a reliable test for identifying topological spin liquids.

[1]  L. Balents,et al.  Spin Liquid Ground State of the Spin-1/2 Square $J_1$-$J_2$ Heisenberg Model , 2011, 1112.2241.

[2]  Matthew B. Hastings,et al.  Topological entanglement entropy of a Bose-Hubbard spin liquid , 2011, 1102.1721.

[3]  S. Simon,et al.  Non-Abelian Anyons and Topological Quantum Computation , 2007, 0707.1889.

[4]  Haldane,et al.  Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the "parity anomaly" , 1988, Physical review letters.

[5]  S. Furukawa,et al.  Topological entanglement entropy in the quantum dimer model on the triangular lattice , 2006, cond-mat/0612227.

[6]  Steven R. White,et al.  Studying Two Dimensional Systems With the Density Matrix Renormalization Group , 2011, 1105.1374.

[7]  S. Dusuel,et al.  Low-energy effective theory of the toric code model in a parallel magnetic field , 2008, 0807.0487.

[8]  Youjin Deng,et al.  Cluster Monte Carlo simulation of the transverse Ising model. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Simeng Yan,et al.  Spin-Liquid Ground State of the S = 1/2 Kagome Heisenberg Antiferromagnet , 2010, Science.

[10]  Philip W. Anderson,et al.  Resonating valence bonds: A new kind of insulator? , 1973 .

[11]  L. Balents Spin liquids in frustrated magnets , 2010, Nature.

[12]  Zhenghan Wang,et al.  On Classification of Modular Tensor Categories , 2007, 0712.1377.

[13]  Robert G. Leigh,et al.  Topological Entanglement Entropy in Chern-Simons Theories and Quantum Hall Fluids , 2008, 0802.3231.

[14]  L. Landau Fault-tolerant quantum computation by anyons , 2003 .

[15]  Read,et al.  Large-N expansion for frustrated quantum antiferromagnets. , 1991, Physical review letters.

[16]  A. Kitaev,et al.  Topological multicritical point in the phase diagram of the toric code model and three-dimensional lattice gauge Higgs model , 2010 .

[17]  S. Sachdev Quantum phase transitions of antiferromagnets and the cuprate superconductors , 2010, 1002.3823.

[18]  Hong-Chen Jiang,et al.  Density matrix renormalization group numerical study of the kagome antiferromagnet. , 2008, Physical review letters.

[19]  Xiao-Gang Wen,et al.  Detecting topological order in a ground state wave function. , 2005, Physical review letters.

[20]  Wen,et al.  Mean-field theory of spin-liquid states with finite energy gap and topological orders. , 1991, Physical review. B, Condensed matter.

[21]  D. Sheng,et al.  Fractional quantum Hall effect of hard-core bosons in topological flat bands. , 2011, Physical review letters.

[22]  M. S. Singh,et al.  Zero-temperature ordering in two-dimensional frustrated quantum Heisenberg antiferromagnets. , 1989, Physical review. B, Condensed matter.

[23]  Yi Zhang,et al.  Quasiparticle statistics and braiding from ground state entanglement , 2011, 1111.2342.

[24]  John Preskill,et al.  Topological entanglement entropy. , 2005, Physical Review Letters.

[25]  M. Troyer,et al.  Breakdown of a topological phase: quantum phase transition in a loop gas model with tension. , 2006, Physical review letters.

[26]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.