Generation of atomic momentum cluster and graph states via cavity QED

We present an experimentally feasible method, based on currently available cavity QED technology, to generate n-partite linear cluster and graph states in external degree of freedom of atoms. The scheme is based on first tagging n two-level atoms with the respective cavity fields in momentum space. Later on an effective Ising interaction between such tagged atoms, realized through consecutive resonant and dispersive interactions of auxiliary atoms with the remanent cavity fields, can generate the desired atomic momenta states. The procedure is completed when the auxiliary atoms after passing through Ramsey zones are detected in either of their internal states. We also briefly explain the generation of weighted graph states in the atomic external degree of freedom.

[1]  M. Nielsen Cluster-state quantum computation , 2005, quant-ph/0504097.

[2]  O. Gühne,et al.  Bell inequality tests of four-photon six-qubit graph states , 2010 .

[3]  G. Roger,et al.  Experimental Test of Bell's Inequalities Using Time- Varying Analyzers , 1982 .

[4]  B. Varcoe,et al.  A cavity-QED scheme for cluster-state quantum computing using crossed atomic beams , 2006 .

[5]  Experimental construction of optical multiqubit cluster states from Bell states , 2005, quant-ph/0501036.

[6]  Shi-Yao Zhu,et al.  Teleportation of an atomic momentum state , 2003 .

[7]  M. S. Zubairy,et al.  Quantum optics: Frontmatter , 1997 .

[8]  B. Shore,et al.  Coherent atomic deflection by resonant standing waves , 1981 .

[9]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[10]  From single- to multiple-pPhoton decoherence in an atom interferometer. , 2000, Physical review letters.

[11]  Matter-wave decoherence due to a gas environment in an atom interferometer. , 2005, Physical review letters.

[12]  W Dür,et al.  Stability of macroscopic entanglement under decoherence. , 2004, Physical review letters.

[13]  One-Way Quantum Computation with Two-Photon Multiqubit Cluster States , 2008 .

[14]  L-M Duan,et al.  Efficient quantum computation with probabilistic quantum gates. , 2005, Physical review letters.

[15]  X. L. Zhang,et al.  Preparation of cluster states and W states with superconducting quantum-interference-device qubits in cavity QED , 2006, quant-ph/0608111.

[16]  G. Rempe,et al.  Bragg Scattering of Slow Atoms from Na Standing Light Wave , 1996, EQEC'96. 1996 European Quantum Electronic Conference.

[17]  Efficient and high-fidelity generation of atomic cluster states with cavity QED and linear optics , 2007, quant-ph/0703116.

[18]  J. Eisert,et al.  Entanglement in Graph States and its Applications , 2006, quant-ph/0602096.

[19]  Géza Tóth,et al.  Experimental analysis of a four-qubit photon cluster state. , 2005, Physical review letters.

[20]  V. Scarani,et al.  Nonlocality of cluster states of qubits , 2004, quant-ph/0405119.

[21]  Masato Koashi,et al.  Simple experimental scheme of preparing a four-photon entangled state for the teleportation-based realization of a linear optical controlled-NOT gate , 2005 .

[22]  G. Rempe,et al.  Acceptance angle for Bragg reflection of atoms from a standing light wave , 1999 .

[23]  Pieter Kok,et al.  Efficient high-fidelity quantum computation using matter qubits and linear optics , 2005 .

[24]  E. Schrödinger Die gegenwärtige Situation in der Quantenmechanik , 1935, Naturwissenschaften.

[25]  Qing Chen,et al.  Efficient construction of two-dimensional cluster states with probabilistic quantum gates , 2006 .

[26]  M. S. Zubairy,et al.  Measurement of entangled states via atomic beam deflection in Bragg's regime , 2004 .

[27]  H. Briegel,et al.  Persistent entanglement in arrays of interacting particles. , 2000, Physical review letters.

[28]  G. Vallone,et al.  One-Way Quantum Computation with Two-Photon Multiqubit Cluster States , 2008, 0807.3887.

[29]  McGowan,et al.  Theoretical and experimental study of the Bragg scattering of atoms from a standing light wave. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[30]  Philip Ball Quantum all the way , 2008 .

[31]  Proposal for a mesoscopic cavity QED realization of the Greenberger-Horne-Zeilinger state. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[32]  F. Saif,et al.  Atomic state teleportation: from internal to external degrees of freedom , 2009 .

[33]  Masato Koashi,et al.  Generation of high-fidelity four-photon cluster state and quantum-domain demonstration of one-way quantum computing. , 2008, Physical review letters.

[34]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[35]  Z. Cao,et al.  Quantum controlled phase gate and cluster states generation via two superconducting quantum interference devices in a cavity , 2006, quant-ph/0607043.

[36]  E. Schrödinger Probability relations between separated systems , 1936, Mathematical Proceedings of the Cambridge Philosophical Society.

[37]  R. Jozsa,et al.  Quantum Computation and Shor's Factoring Algorithm , 1996 .

[38]  A. Bernhardt,et al.  Deflection of atoms by a resonant standing electromagnetic wave , 1978 .

[39]  M. Suhail Zubairy,et al.  Measurement of the Wigner function via atomic beam deflection in the Raman–Nath regime , 2002, quant-ph/0201121.

[40]  Shi-Biao Zheng Generation of cluster states in ion-trap systems , 2006 .

[41]  Xuedong Hu,et al.  Producing cluster states in charge qubits and flux qubits. , 2006, Physical review letters.

[42]  A. Galindo,et al.  Information and computation: Classical and quantum aspects , 2001, quant-ph/0112105.

[43]  A. Zeilinger,et al.  Adiabatic following in standing-wave diffraction of atoms , 1999 .

[44]  F. Saif,et al.  Generation of field cluster states through collective operation of cavity QED disentanglement eraser , 2008 .

[45]  Engineering entanglement between external degrees of freedom of atoms via Bragg scattering , 2002, quant-ph/0201086.

[46]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[47]  Rameez-ul Islam,et al.  Generation of Bell, NOON and W states via atom interferometry , 2008 .

[48]  Gilles Nogues,et al.  Coherent Operation of a Tunable Quantum Phase Gate in Cavity QED , 1999 .

[49]  Walther,et al.  Observation of sub-Poissonian photon statistics in a micromaser. , 1990, Physical review letters.

[50]  N. Bohr II - Can Quantum-Mechanical Description of Physical Reality be Considered Complete? , 1935 .

[51]  Philip Ball,et al.  Physics: Quantum all the way , 2008, Nature.

[52]  Zhuo-Liang Cao,et al.  Generation of cluster states , 2006 .

[53]  Philip Walther,et al.  Experimental violation of a cluster state bell inequality. , 2005, Physical review letters.

[54]  A. Zeilinger,et al.  Experimental one-way quantum computing , 2005, Nature.

[55]  X. L. Zhang,et al.  Erratum: Preparation of cluster states and W states with superconducting quantum-interference-device qubits in cavity QED [Phys. Rev. A 74, 024303 (2006)] , 2006 .

[56]  M. S. Zubairy,et al.  Quantum non-demolition measurement of Fock states via atomic scattering in Bragg regime , 1999 .

[57]  J. Eisert,et al.  Multiparty entanglement in graph states , 2003, quant-ph/0307130.

[58]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[59]  T. Radtke,et al.  Generation of two-dimensional cluster states by using high-finesse bimodal cavities , 2009, 0903.3167.

[60]  G. Rempe,et al.  Origin of quantum-mechanical complementarity probed by a ‘which-way’ experiment in an atom interferometer , 1998, Nature.

[61]  David E. Pritchard,et al.  Optics and interferometry with atoms and molecules , 2009 .

[62]  Jaeyoon Cho,et al.  Generation of atomic cluster states through the cavity input-output process. , 2005, Physical review letters.

[63]  Jaehak Lee,et al.  Scalable cavity-QED-based scheme of generating entanglement of atoms and of cavity fields , 2008 .

[64]  G. Rempe,et al.  Standing wave diffraction with a beam of slow atoms , 1997 .

[65]  G J Milburn,et al.  Measurement-based teleportation along quantum spin chains. , 2005, Physical review letters.

[66]  J. Raimond,et al.  Manipulating quantum entanglement with atoms and photons in a cavity , 2001 .

[67]  M. Chapman,et al.  Deterministic loading of individual atoms to a high-finesse optical cavity. , 2007, Physical review letters.

[68]  S. Haroche,et al.  Controlled entanglement of two field modes in a cavity quantum electrodynamics experiment , 2001, quant-ph/0105062.

[69]  Farhan Saif,et al.  Engineering maximally entangled N-photon NOON field states using an atom interferometer based on Bragg regime cavity QED , 2007 .

[70]  S. Deleglise,et al.  Reconstruction of non-classical cavity field states with snapshots of their decoherence , 2008, Nature.

[71]  G. Agarwal,et al.  Quantum disentanglement eraser: A cavity QED implementation , 2004 .

[72]  Zbigniew Ficek,et al.  Generation of pure continuous-variable entangled cluster states of four separate atomic ensembles in a ring cavity , 2008, 0812.4631.

[73]  T. Rudolph,et al.  Resource-efficient linear optical quantum computation. , 2004, Physical review letters.