Witnessed entanglement and the geometric measure of quantum discord

We establish relations between geometric quantum discord and entanglement quantifiers obtained by means of optimal witness operators. In particular, we prove a relation between negativity and geometric discord in the Hilbert-Schmidt norm, which is slightly different from a previous conjectured one [Phys. Rev. A 84, 052110 (2011)].We also show that, redefining the geometric discord with the trace norm, better bounds can be obtained. We illustrate our results numerically.

[1]  Davide Girolami,et al.  Interplay between computable measures of entanglement and other quantum correlations , 2011, 1111.3643.

[2]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[3]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[4]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[5]  T. Paterek,et al.  Unified view of quantum and classical correlations. , 2009, Physical review letters.

[6]  F. Brandão,et al.  Witnessed Entanglement , 2004, quant-ph/0405096.

[7]  K. Życzkowski,et al.  Geometry of Quantum States , 2007 .

[8]  W. Zurek,et al.  Quantum discord: a measure of the quantumness of correlations. , 2001, Physical review letters.

[9]  J. Oppenheim,et al.  Thermodynamical approach to quantifying quantum correlations. , 2001, Physical review letters.

[10]  Giuseppe Compagno,et al.  Unified view of correlations using the square-norm distance , 2011, 1112.6370.

[11]  C. H. Bennett,et al.  Unextendible product bases and bound entanglement , 1998, quant-ph/9808030.

[12]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[13]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[14]  H. Zaraket,et al.  Positive-operator-valued measure optimization of classical correlations (6 pages) , 2004 .

[15]  Yannick Ole Lipp,et al.  Quantum discord as resource for remote state preparation , 2012, Nature Physics.

[16]  F. Brandão Quantifying entanglement with witness operators , 2005, quant-ph/0503152.

[17]  S. Luo,et al.  Geometric measure of quantum discord , 2010 .

[18]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[19]  F. Brandão,et al.  Separable multipartite mixed states: operational asymptotically necessary and sufficient conditions. , 2004, Physical review letters.

[20]  V. Vedral,et al.  Classical, quantum and total correlations , 2001, quant-ph/0105028.

[21]  Č. Brukner,et al.  Necessary and sufficient condition for nonzero quantum discord. , 2010, Physical review letters.

[22]  F. F. Fanchini,et al.  Conservation law for distributed entanglement of formation and quantum discord , 2010, 1006.2460.

[23]  L. Aolita,et al.  Operational interpretations of quantum discord , 2010, 1008.3205.

[24]  A. Acín,et al.  Almost all quantum states have nonclassical correlations , 2009, 0908.3157.

[25]  G. Vidal,et al.  Robustness of entanglement , 1998, quant-ph/9806094.

[26]  Thiago O. Maciel,et al.  Quantifying quantum correlations in fermionic systems using witness operators , 2012, Quantum Inf. Process..

[27]  Animesh Datta,et al.  Quantum discord and the power of one qubit. , 2007, Physical review letters.

[28]  M. Horodecki,et al.  Mixed-State Entanglement and Distillation: Is there a “Bound” Entanglement in Nature? , 1998, quant-ph/9801069.