Multi-Scale Parameter Identification of Lithium-Ion Battery Electric Models Using a PSO-LM Algorithm

This paper proposes a multi-scale parameter identification algorithm for the lithium-ion battery (LIB) electric model by using a combination of particle swarm optimization (PSO) and Levenberg-Marquardt (LM) algorithms. Two-dimensional Poisson equations with unknown parameters are used to describe the potential and current density distribution (PDD) of the positive and negative electrodes in the LIB electric model. The model parameters are difficult to determine in the simulation due to the nonlinear complexity of the model. In the proposed identification algorithm, PSO is used for the coarse-scale parameter identification and the LM algorithm is applied for the fine-scale parameter identification. The experiment results show that the multi-scale identification not only improves the convergence rate and effectively escapes from the stagnation of PSO, but also overcomes the local minimum entrapment drawback of the LM algorithm. The terminal voltage curves from the PDD model with the identified parameter values are in good agreement with those from the experiments at different discharge/charge rates.

[1]  Han-Xiong Li,et al.  Real-Time Estimation of Temperature Distribution for Cylindrical Lithium-Ion Batteries Under Boundary Cooling , 2017, IEEE Transactions on Industrial Electronics.

[2]  Han-Xiong Li,et al.  Eigenspectrum-Based Iterative Learning Control for a Class of Distributed Parameter System , 2017, IEEE Transactions on Automatic Control.

[3]  Han-Xiong Li,et al.  Parameter identification for the electrochemical model of Li-ion battery , 2016, 2016 International Conference on System Science and Engineering (ICSSE).

[4]  Antonello Rizzi,et al.  A PSO algorithm for transient dynamic modeling of lithium cells through a nonlinear RC filter , 2016, 2016 IEEE Congress on Evolutionary Computation (CEC).

[5]  Han-Xiong Li,et al.  Sliding mode control design for a rapid thermal processing system , 2016 .

[6]  Han-Xiong Li,et al.  Probabilistic Inference-Based Least Squares Support Vector Machine for Modeling Under Noisy Environment , 2016, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[7]  A. Izadian,et al.  Electrochemical model parameter identification of a lithium-ion battery using particle swarm optimization method , 2016 .

[8]  Antonello Rizzi,et al.  A Novel Mechanical Analogy-Based Battery Model for SoC Estimation Using a Multicell EKF , 2016, IEEE Transactions on Sustainable Energy.

[9]  Han-Xiong Li,et al.  Spatiotemporal modeling of internal states distribution for lithium-ion battery , 2016 .

[10]  Jemal H. Abawajy,et al.  An Accelerated Particle Swarm Optimization Based Levenberg Marquardt Back Propagation Algorithm , 2014, ICONIP.

[11]  Zhen Liu,et al.  A Spatiotemporal Estimation Method for Temperature Distribution in Lithium-Ion Batteries , 2014, IEEE Transactions on Industrial Informatics.

[12]  Jaeshin Yi,et al.  Modeling the temperature dependence of the discharge behavior of a lithium-ion battery in low environmental temperature , 2013 .

[13]  Chao Lyu,et al.  A new extension of physics-based single particle model for higher charge–discharge rates , 2013 .

[14]  Jianqiu Li,et al.  A review on the key issues for lithium-ion battery management in electric vehicles , 2013 .

[15]  Ui Seong Kim,et al.  Modeling the Thermal Behaviors of a Lithium-Ion Battery during Constant-Power Discharge and Charge Operations , 2013 .

[16]  Hosam K. Fathy,et al.  Genetic identification and fisher identifiability analysis of the Doyle–Fuller–Newman model from experimental cycling of a LiFePO4 cell , 2012 .

[17]  Jaeshin Yi,et al.  Modelling the thermal behaviour of a lithium-ion battery during charge , 2011 .

[18]  Jaeshin Yi,et al.  Modeling the Dependence of the Discharge Behavior of a Lithium-Ion Battery on the Environmental Temperature , 2011 .

[19]  Richard D. Braatz,et al.  Modeling and Simulation of Lithium-Ion Batteries from a Systems Engineering Perspective , 2010 .

[20]  B. Scrosati,et al.  Lithium batteries: Status, prospects and future , 2010 .

[21]  Jun Li,et al.  Modeling of a proton exchange membrane fuel cell based on the hybrid particle swarm optimization with Levenberg-Marquardt neural network , 2010, Simul. Model. Pract. Theory.

[22]  Yong Wang,et al.  Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization , 2010, Appl. Soft Comput..

[23]  Yong Wang,et al.  A hybrid multi-swarm particle swarm optimization to solve constrained optimization problems , 2009, Frontiers of Computer Science in China.

[24]  Ralph E. White,et al.  Parameter Estimation and Life Modeling of Lithium-Ion Cells , 2008 .

[25]  Chee Burm Shin,et al.  A two-dimensional modeling of a lithium-polymer battery , 2006 .

[26]  Navid Mostoufi,et al.  Numerical Methods for Chemical Engineers with MATLAB Applications with Cdrom , 1999 .

[27]  John Newman,et al.  Potential and Current Distribution in Electrochemical Cells Interpretation of the Half‐Cell Voltage Measurements as a Function of Reference‐Electrode Location , 1993 .

[28]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[29]  T. I. Evans,et al.  Estimation of Electrode Kinetic Parameters of the Lithium/Thionyl Chloride Cell Using a Mathematical Model , 1989 .

[30]  H. Gu,et al.  Mathematical Analysis of a Zn / NiOOH Cell , 1983 .