Transparent functional oxide stretchable electronics: micro-tectonics enabled high strain electrodes

Fully transparent and flexible electronic substrates that incorporate functional materials are the precursors to realising nextgeneration devices with sensing, self-powering and portable functionalities. Here, we demonstrate a universal process for transferring planar, transparent functional oxide thin films on to elastomeric polydimethylsiloxane (PDMS) substrates. This process overcomes the challenge of incorporating high-temperature-processed crystalline oxide materials with low-temperature organic substrates. The functionality of the process is demonstrated using indium tin oxide (ITO) thin films to realise fully transparent and flexible resistors. The ITO thin films on PDMS are shown to withstand uniaxial strains of 15%, enabled by microstructure tectonics. Furthermore, zinc oxide was transferred to display the versatility of this transfer process. Such a ubiquitous process for the transfer of functional thin films to elastomeric substrates will pave the way for touch sensing and energy harvesting for displays and electronics with flexible and transparent characteristics. NPG Asia Materials (2013) 5, e62; doi:10.1038/am.2013.41; published online 13 September 2013

[1]  G. Whitesides,et al.  Soft Lithography. , 1998, Angewandte Chemie.

[2]  Joseph George,et al.  Electrical and optical properties of electron beam evaporated ITO thin films , 2000 .

[3]  Shinji Ando,et al.  Flexible Organic Electroluminescent Devices Based on Fluorine‐Containing Colorless Polyimide Substrates , 2002 .

[4]  Z. Suo,et al.  Stretchable gold conductors on elastomeric substrates , 2003 .

[5]  Zu Rong Dai,et al.  Novel Nanostructures of Functional Oxides Synthesized by Thermal Evaporation , 2003 .

[6]  Z. Suo,et al.  Design and performance of thin metal film interconnects for skin-like electronic circuits , 2004, IEEE Electron Device Letters.

[7]  H. Ohta,et al.  Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors , 2004, Nature.

[8]  H. Morkoç,et al.  A COMPREHENSIVE REVIEW OF ZNO MATERIALS AND DEVICES , 2005 .

[9]  J. Rogers,et al.  Recent progress in soft lithography , 2005 .

[10]  A. Grishin,et al.  Characterization of heteroepitaxial Na0.5K0.5NbO3/La0.5Sr0.5CoO3 electro-optical cell , 2005 .

[11]  Yonggang Huang,et al.  Transfer printing by kinetic control of adhesion to an elastomeric stamp , 2006 .

[12]  Sigurd Wagner,et al.  Mechanisms of reversible stretchability of thin metal films on elastomeric substrates , 2006 .

[13]  K. Short,et al.  Effect of multi-layered bottom electrodes on the orientation of strontium-doped lead zirconate titanate thin films , 2008 .

[14]  A. W. Groenland,et al.  Stability of thin platinum films implemented in high-temperature microdevices , 2009 .

[15]  Stéphanie P. Lacour,et al.  Extended cyclic uniaxial loading of stretchable gold thin-films on elastomeric substrates , 2009 .

[16]  J. Baumberg,et al.  Actively tuned plasmons on elastomerically driven Au nanoparticle dimers. , 2010, Nano letters.

[17]  Weidong Zhou,et al.  Flexible high-frequency microwave inductors and capacitors integrated on a polyethylene terephthalate substrate , 2010 .

[18]  Michael C. McAlpine,et al.  Piezoelectric ribbons printed onto rubber for flexible energy conversion. , 2010, Nano letters.

[19]  Yonggang Huang,et al.  Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics. , 2010, Nature materials.

[20]  Amber T. Krummel,et al.  Functional patterning of PDMS microfluidic devices using integrated chemo-masks. , 2010, Lab on a chip.

[21]  Andrew G. Gillies,et al.  Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. , 2010, Nature materials.

[22]  Jong-Hyun Ahn,et al.  High-performance flexible graphene field effect transistors with ion gel gate dielectrics. , 2010, Nano letters.

[23]  Sharath Sriram,et al.  Strain-resistance relationship in gold conductors for elastomeric-based flexible devices , 2011, Other Conferences.

[24]  Zhong Lin Wang,et al.  Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. , 2012, Angewandte Chemie.

[25]  Audrey M. Bowen,et al.  Transfer Printing Techniques for Materials Assembly and Micro/Nanodevice Fabrication , 2012, Advanced materials.

[26]  Derek Abbott,et al.  Elastomeric silicone substrates for terahertz fishnet metamaterials , 2012 .

[27]  A. Mitchell,et al.  Elastomer-Based Pneumatic Switch for Radio Frequency Microdevices , 2012, Journal of Microelectromechanical Systems.

[28]  M. Yun,et al.  Transferred wrinkled Al2O3 for highly stretchable and transparent graphene-carbon nanotube transistors. , 2013, Nature materials.