Moderation and diffusion of positrons in tungsten meshes and foils

The efficiency of tungsten meshes and thin foils for moderation of fast positrons from 22Na has been investigated in transmission geometry and a fair agreement has been found with previous experimental results where directly comparable. For foils, the dependence on material thickness is found to be similar to the prediction of the Vehanen-Makinen diffusion model; however, the magnitude is 5–10 times lower. A broad consensus is observed between experiment and the results of a three-dimensional model developed in this work. For a given thickness, meshes are found to be generally better than foils by around a factor of 10 with a maximum efficiency ( ∼10−3) comparable to that achieved with thin single crystal foils, in accord with previous measurements and the results of the present model.

[1]  D. Murtagh,et al.  An electrostatic brightness-enhanced timed positron beam for atomic collision experiments , 2014 .

[2]  M. Butterling,et al.  Flash lamp annealing of tungsten surfaces marks a new way to optimized slow positron yields , 2013 .

[3]  D. Murtagh,et al.  Differential Ionization Studies by Positron Impact , 2010 .

[4]  D. Murtagh,et al.  Progress towards a positron reaction microscope , 2010 .

[5]  K. Saarinen,et al.  Compact positron beam for measurement of transmission moderator efficiencies and positron yields of encapsulated sources , 2006 .

[6]  C. Cheung,et al.  Tungsten mesh as positron transmission moderator in a monoenergetic positron beam , 2004 .

[7]  Y. Itoh,et al.  A high-efficiency positron moderator using electro-polished tungsten meshes , 2002 .

[8]  K. H. Lee,et al.  Practical usage of a W moderator for slow positron beam production , 1996 .

[9]  C. Surko,et al.  Solid neon moderator for positron-trapping experiments , 1996 .

[10]  Charlton,et al.  Positronium-argon scattering. , 1996, Physical review letters.

[11]  P. Scardi,et al.  Tungsten Singlecrystal and Polycrystalline Foils Used as First Transmission Moderator , 1992 .

[12]  G. R. Massoumi,et al.  RARE GAS MODERATED ELECTROSTATIC POSITRON BEAM , 1991 .

[13]  M. Charlton,et al.  The effect of laser annealing of thin W(100) films on positron transmission reemission properties , 1990 .

[14]  M. Charlton,et al.  Experimentation with thin single crystal W foils as slow positron transmission mode moderators , 1988 .

[15]  K. Lynn,et al.  Interaction of positron beams with surfaces, thin films, and interfaces , 1988 .

[16]  G. R. Massoumi,et al.  Positron emission yields for encapsulated 22Na sources , 1988 .

[17]  K. Lynn,et al.  Development of transmission positron moderators , 1987 .

[18]  A. Mills,et al.  Solid neon moderator for producing slow positrons , 1986 .

[19]  Mills,et al.  Positron dynamics in rare-gas solids. , 1986, Physical review letters.

[20]  K. Lynn,et al.  Development and use of a thin‐film transmission positron moderator , 1985 .

[21]  A. Vehanen,et al.  Thin films for slow positron generation , 1985 .

[22]  A. Vehanen,et al.  Improved slow-positron yield using a single crystal tungsten moderator , 1983 .

[23]  A. Mills Brightness enhancement of slow positron beams , 1980 .

[24]  M. Mourino,et al.  Profiles and absorption coefficients of positrons implanted in solids from radioactive sources , 1979 .

[25]  W. Brandt,et al.  Positron implantation-profile effects in solids , 1977 .