Mathematical models to adjust the parameters of in vitro cumulative gas production of diets containing preserved Gliricidia

ABSTRACT: This study examined the use of the Gompertz, Groot, monomolecular, Richards and two-compartment-logistic mathematical models to investigate the kinetics of in vitro gas production of diets composed of combinations of Gliricidia hay or silage. In addition, the effects of Gliricidia hay or silage inclusion on the in vitro cumulative gas production of these diets were evaluated. Rumen fermentation kinetics were analyzed by the in vitro cumulative gas production methodology. The model parameters were estimated using the Gauss Newton method, with the exception of the Richards model, which was used by Marquardt’s algorithm. Model fit was assessed using the determination coefficient, F test for parameters identity, concordance correlation coefficient, root mean square error of prediction, and decomposition of mean square error of prediction into mean error, systematic bias and random error. The models were compared for accuracy (pairwise mean square error of prediction) and precision (delta Akaike’s information criterion). All model evaluation and comparison statistics were calculated using Model Evaluation System software version 3.2.2. The Groot and Richards models did not differ from each other (P>0.05) and were the most precise and accurate (P<0.05). Therefore, the Groot model was selected due to its better accuracy and precision and easier access to the parameters. The inclusion of Gliricidia silage in the diet resulted in an increase in the time to obtain the maximum rate of degradation and in the time after incubation when half of the asymptotic level was reached. The Groot model is recommended to estimate the average curve. Dietary inclusion of Gliricidia silage alters the gas production curve due to the longer time required for the diet to reach the maximum rate of degradation, this can increase the time the diet remains in rumen and promote a reduction in the consumption.

[1]  Roberta de Lima Valença,et al.  Equação de regressão para estimar volume de gases ruminais e correlação entre composição química e parâmetros da fermentação , 2020, Diversitas Journal.

[2]  D. R. M. Alessio,et al.  Chemical composition of corn silage produced by scientific studies in Brazil - A meta-analysis , 2017 .

[3]  R. Prado,et al.  Assessing the nutritional value of agroindustrial co-products and feed through chemical composition, in vitro digestibility, and gas production technique , 2017 .

[4]  D. M. M. R. Azevêdo,et al.  Degradabilidade ruminal de casca de vagem de feijão-fava (Phaseolus lunatus L.) amonizada com ureia , 2017 .

[5]  C. Leal,et al.  In vitro fermentation characteristics of ruminant diets using ethanol extract of brown propolis as a nutritional additive , 2017 .

[6]  Luís Carlos Vinhas Ítavo,et al.  Influence of protodioscin content on digestibility and in vitro degradation kinetics in Urochloa brizantha cultivars , 2020, Crop and Pasture Science.

[7]  L. S. Fernandes,et al.  Performance of sheep grazing Panicum maximum cv. Massai and supplemented with protein sources during the dry season , 2020 .

[8]  G. T. Santos,et al.  In vitro gas production kinetics and digestibility in ruminant diets with different levels of cashew nut shell liquid , 2018, Semina: Ciências Agrárias.

[9]  N. Esenbuga,et al.  Estimation of growth curve characteristics of Hemsin male and female sheep , 2014 .

[10]  L. C. Pereira,et al.  Combinações de fontes de nitrogênio não proteico em suplementos para novilhos Nelore em pastejo , 2016 .

[11]  Mária Lindomárcia Leonardo da Costa,et al.  Generation of models from existing models composition: An application to agrarian sciences , 2019, PloS one.

[12]  W. Zollitsch,et al.  Comparing the effects of silage and hay from similar parent grass forages on organic dairy cows’ feeding behavior, feed intake and performance , 2020 .

[13]  K. Kliem,et al.  A review and simplification of the in vitro incubation medium , 2005 .

[14]  F. Rombouts,et al.  Modeling of the Bacterial Growth Curve , 1990, Applied and environmental microbiology.

[15]  S. D. da Silva,et al.  Unravelling the relationship between a seasonal environment and the dynamics of forage growth in grazed swards , 2020 .

[16]  E. Detmann,et al.  Consumo e dinâmica ruminal da fibra em detergente neutro em bovinos em pastejo no período das águas recebendo suplementação com nitrogênio não-proteico e/ou proteína verdadeira , 2011 .

[17]  Isabel Martinele,et al.  Abundance and diversity of rumen protozoa in lambs fed Gliricidia sepium silage , 2014 .

[18]  R. Roscoe,et al.  Thermal decomposition, chemical composition, in vitro digestibility and gas production and in situ degradability of oilseed residues from the biofuel industry. , 2018, Animal science journal = Nihon chikusan Gakkaiho.

[19]  J. Vasconcelos,et al.  Effects of ruminal infusion of a slow-release polymer-coated urea or conventional urea on apparent n , 2011 .

[20]  J. Groot,et al.  Multiphasic analysis of gas production kinetics for in vitro fermentation of ruminant feeds , 1996 .

[21]  A. Pell,et al.  Computerized monitoring of gas production to measure forage digestion in vitro. , 1993, Journal of dairy science.

[22]  J. Sarmento,et al.  Avaliação dos modelos logístico bicompartimental e de Gompertz na estimativa da dinâmica de fermentação ruminal in vitro do farelo e da torta de babaçu (Orbignya martiana) , 2011 .

[23]  M. Theodorou,et al.  A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. , 1994 .

[24]  Luis Orlindo Tedeschi,et al.  Assessment of the adequacy of mathematical models , 2006 .

[25]  R. Suñe,et al.  Modelos matemáticos para ajuste da produção de gases in vitro em diferentes tempos de incubação e cinética ruminal de silagens de milho Mathematical models for adjustment of in vitro gas production at different incubation times and kinetics of corn silages , 2014 .