The structure group of an L-algebra is torsion-free
暂无分享,去创建一个
[1] Shahn Majid,et al. Set-theoretic solutions of the Yang–Baxter equation, braces and symmetric groups , 2015, Advances in Mathematics.
[2] Patrick Dehornoy. Gaussian Groups are Torsion Free , 1998 .
[3] Bruno Bosbach. Rechtskomplementäre Halbgruppen. Axiome, Polynome, Kongruenzen , 1972 .
[4] Matthieu Picantin,et al. The Center of Thin Gaussian Groups , 2001 .
[5] M. Darnel. Theory of Lattice-Ordered Groups , 1994 .
[6] Wolfgang Rump,et al. A decomposition theorem for square-free unitary solutions of the quantum Yang-Baxter equation , 2005 .
[7] Wolfgang Rump,et al. Right l-groups, geometric Garside groups, and solutions of the quantum Yang–Baxter equation , 2015 .
[8] D. Rolfsen,et al. BRAIDS, ORDERINGS AND ZERO DIVISORS , 1998 .
[9] Fabienne Chouraqui,et al. Garside Groups and Yang–Baxter Equation , 2009, 0912.4827.
[10] W. Rump. L-algebras, self-similarity, and l-groups , 2008 .
[11] Patrick Dehornoy,et al. Braid groups and left distributive operations , 1994 .
[12] Patrick Dehornoy,et al. Gaussian Groups and Garside Groups, Two Generalisations of Artin Groups , 1999 .
[13] Vincenzo Marra,et al. The Lebesgue state of a unital abelian lattice-ordered group , 2007 .
[14] L. Neuwirth,et al. The Braid Groups. , 1962 .
[15] Sylvia Pulmannová,et al. New trends in quantum structures , 2000 .
[16] Patrick Dehornoy. Groupes de Garside , 2001 .
[17] Patrick Dehornoy,et al. Set-theoretic solutions of the Yang–Baxter equation, RC-calculus, and Garside germs , 2014, 1403.3019.