Graphene-Sb2Se3 thin films photoelectrode synthesized by in situ electrodeposition

[1]  W. Jo,et al.  Adjusting the Anisotropy of 1D Sb2Se3 Nanostructures for Highly Efficient Photoelectrochemical Water Splitting , 2018 .

[2]  Xin Jiang,et al.  Scalable Low-Band-Gap Sb2Se3 Thin-Film Photocathodes for Efficient Visible-Near-Infrared Solar Hydrogen Evolution. , 2017, ACS nano.

[3]  T. Moehl,et al.  Photocorrosion-resistant Sb2Se3 photocathodes with earth abundant MoSx hydrogen evolution catalyst , 2017 .

[4]  G. Gary Wang,et al.  Progress in Developing Metal Oxide Nanomaterials for Photoelectrochemical Water Splitting , 2017 .

[5]  Liang Gao,et al.  6.5% Certified Efficiency Sb2Se3 Solar Cells Using PbS Colloidal Quantum Dot Film as Hole-Transporting Layer , 2017 .

[6]  Chenghao Yang,et al.  A New rGO‐Overcoated Sb2Se3 Nanorods Anode for Na+ Battery: In Situ X‐Ray Diffraction Study on a Live Sodiation/Desodiation Process , 2017 .

[7]  Seonhee Lee,et al.  Self-oriented Sb2Se3 nanoneedle photocathodes for water splitting obtained by a simple spin-coating method , 2017 .

[8]  Xingcheng Xiao,et al.  Graphene‐Based Nanocomposites for Energy Storage , 2016 .

[9]  K. Sivula,et al.  Surface modification of semiconductor photoelectrodes. , 2015, Physical chemistry chemical physics : PCCP.

[10]  H. Jeong,et al.  Antimony-doped graphene nanoplatelets , 2015, Nature Communications.

[11]  P. Yang,et al.  Artificial photosynthesis for sustainable fuel and chemical production. , 2015, Angewandte Chemie.

[12]  Jiang Tang,et al.  Thermal evaporation and characterization of Sb2Se3 thin film for substrate Sb2Se3/CdS solar cells. , 2014, ACS applied materials & interfaces.

[13]  A. Manivannan,et al.  Photocatalytic Water Oxidation by Hematite/Reduced Graphene Oxide Composites , 2013 .

[14]  C. Flox,et al.  Optimization of surface charge transfer processes on rutile TiO2 nanorods photoanodes for water splitting , 2013 .

[15]  A. Medvedev,et al.  The formation of a peroxoantimonate thin film coating on graphene oxide (GO) and the influence of the GO on its transformation to antimony oxides and elemental antimony , 2012 .

[16]  M. Jaroniec,et al.  Graphene-based semiconductor photocatalysts. , 2012, Chemical Society reviews.

[17]  Rose Amal,et al.  Reducing Graphene Oxide on a Visible-Light BiVO4 Photocatalyst for an Enhanced Photoelectrochemical Water Splitting , 2010 .

[18]  W. R. Daud,et al.  An overview of photocells and photoreactors for photoelectrochemical water splitting , 2010 .

[19]  R. Venkatasubramanian,et al.  Thin-film thermoelectric devices with high room-temperature figures of merit , 2001, Nature.