The maximum relaxation time of a random walk

We show the minimum spectral gap of the normalized Laplacian over all simple, connected graphs on $n$ vertices is $(1+o(1))\tfrac{54}{n^3}$. This minimum is achieved asymptotically by a double kite graph. Consequently, this leads to sharp upper bounds for the maximum relaxation time of a random walk, settling a conjecture of Aldous and Fill. We also improve an eigenvalue-diameter inequality by giving a new lower bound for the spectral gap of the normalized Laplacian. This eigenvalue lower bound is asymptotically best possible.

[1]  Josef Leydold,et al.  Graphs of given order and size and minimum algebraic connectivity , 2012 .

[2]  Peter Winkler,et al.  Maximum itting Time for Random Walks on Graphs , 1990, Random Struct. Algorithms.

[3]  U. Feige,et al.  Spectral Graph Theory , 2015 .

[4]  Shaun M. Fallat,et al.  Extremizing algebraic connectivity subject to graph theoretic constraints , 1998 .

[5]  F. Göbel,et al.  Random walks on graphs , 1974 .

[6]  Uriel Feige,et al.  A Tight Upper Bound on the Cover Time for Random Walks on Graphs , 1995, Random Struct. Algorithms.

[7]  Richard A. Brualdi,et al.  On the spectral radius of complementary acyclic matrices of zeros and ones , 1986 .

[8]  Stephen P. Boyd,et al.  Minimizing Effective Resistance of a Graph , 2008, SIAM Rev..

[9]  M. Karonski Collisions among Random Walks on a Graph , 1993 .

[10]  V. Climenhaga Markov chains and mixing times , 2013 .

[11]  J. Mazo Some extremal Markov chains , 1982, The Bell System Technical Journal.

[12]  Herbert S. Wilf,et al.  The Editor's Corner: The White Screen Problem , 1989 .

[13]  Zoran Stanić Graphs with small spectral gap , 2013 .

[14]  Uriel Feige,et al.  Collecting coupons on trees, and the cover time of random walks , 1996, computational complexity.

[15]  David J. Aldous,et al.  Lower bounds for covering times for reversible Markov chains and random walks on graphs , 1989 .

[16]  A. Odlyzko,et al.  Bounds for eigenvalues of certain stochastic matrices , 1981 .

[17]  Uriel Feige,et al.  A Tight Lower Bound on the Cover Time for Random Walks on Graphs , 1995, Random Struct. Algorithms.

[18]  J. Delvenne,et al.  Random walks on graphs , 2004 .

[19]  C. Brand,et al.  Characterization of Trivalent Graphs with Minimal Eigenvalue Gap , 2007 .