On the Complexity of Solving Generic Over-determined Bilinear Systems

In this paper, we study the complexity of solving generic over-determined bilinear systems over a finite field $\mathbb{F}$. Given a generic bilinear sequence $B \in \mathbb{F}[\mathbf{x},\mathbf{y}]$, with respect to a partition of variables $\mathbf{x}$, $\mathbf{y}$, we show that, the solutions of the system $B= \mathbf{0}$ can be efficiently found on the $\mathbb{F}[\mathbf{y}]$-module generated by $B$. Following this observation, we propose three variations of Grobner basis algorithms, that only involve multiplication by monomials in they-variables, namely, $\mathbf{y}$-XL, based on the XL algorithm, $\mathbf{y}$-MLX, based on the mutant XL algorithm, and $\mathbf{y}$-HXL, basedon a hybrid approach. We define notions of regularity for over-determined bilinear systems,that capture the idea of genericity, and we develop the necessary theoretical tools to estimate the complexity of the algorithms for such sequences. We also present extensive experimental results, testing our conjecture, verifying our results, and comparing the complexity of the various methods.

[1]  Jean-Charles Faugère,et al.  Sparse Gröbner bases: the unmixed case , 2014, ISSAC.

[2]  David A. Cox,et al.  Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics) , 2007 .

[3]  Daniel Cabarcas,et al.  Grobner Bases Computation and Mutant Polynomials , 2011 .

[4]  Luk Bettale,et al.  Hybrid approach for solving multivariate systems over finite fields , 2009, J. Math. Cryptol..

[5]  J. Faugère A new efficient algorithm for computing Gröbner bases (F4) , 1999 .

[6]  Faculté de Médecine Pitié-Salpêtrière Université Pierre et Marie Curie - Paris VI , 2013 .

[7]  Jintai Ding,et al.  Flexible Partial Enlargement to Accelerate Gröbner Basis Computation over F2 , 2010, AFRICACRYPT.

[8]  Mohab Safey El Din,et al.  Gröbner bases of bihomogeneous ideals generated by polynomials of bidegree (1, 1): Algorithms and complexity , 2010, J. Symb. Comput..

[9]  Magali Bardet,et al.  Étude des systèmes algébriques surdéterminés. Applications aux codes correcteurs et à la cryptographie , 2004 .

[10]  M. ScholarWorks Solution Theory for Systems of Bilinear Equations , 2019 .

[11]  Daniel Smith-Tone,et al.  Key Recovery Attack for ZHFE , 2017, PQCrypto.

[12]  Bruno Buchberger,et al.  Bruno Buchberger's PhD thesis 1965: An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal , 2006, J. Symb. Comput..

[13]  C. Tomasi,et al.  Systems of Bilinear Equations , 1997 .

[14]  Luk Bettale,et al.  Solving polynomial systems over finite fields: improved analysis of the hybrid approach , 2012, ISSAC.

[15]  Ray A. Perlner,et al.  Improvements of Algebraic Attacks for Solving the Rank Decoding and MinRank Problems , 2020, ASIACRYPT.

[16]  John Baena,et al.  On the Complexity of "Superdetermined" Minrank Instances , 2019, PQCrypto.

[17]  Bo-Yin Yang,et al.  Asymptotically faster quantum algorithms to solve multivariate quadratic equations , 2018, IACR Cryptol. ePrint Arch..

[18]  Moni Naor,et al.  Post-Quantum Cryptography , 2017, Lecture Notes in Computer Science.

[19]  Daniel Smith-Tone,et al.  Key Recovery Attack for All Parameters of HFE- , 2017, PQCrypto.

[20]  Ray A. Perlner,et al.  Algebraic attacks for solving the Rank Decoding and MinRank problems without Gröbner basis , 2020, ArXiv.

[21]  N. Courtois,et al.  Efficient Algorithms for Solving Overdefined Systems of Multivariate Polynomial Equations , 2000, EUROCRYPT.

[22]  Charles R. Johnson,et al.  Solution theory for systems of bilinear equations , 2013, 1303.4988.

[23]  Douglas H. Wiedemann Solving sparse linear equations over finite fields , 1986, IEEE Trans. Inf. Theory.

[24]  Jean-Charles Faugère,et al.  On the complexity of solving quadratic Boolean systems , 2011, J. Complex..

[25]  Charles R. Johnson,et al.  Solution theory for complete bilinear systems of equations , 2009, Numer. Linear Algebra Appl..

[26]  Jintai Ding,et al.  Solving Degree and Degree of Regularity for Polynomial Systems over a Finite Fields , 2013, Number Theory and Cryptography.

[27]  Jintai Ding,et al.  MXL2: Solving Polynomial Equations over GF(2) Using an Improved Mutant Strategy , 2008, PQCrypto.

[28]  B. Salvy,et al.  Asymptotic Behaviour of the Degree of Regularity of Semi-Regular Polynomial Systems , 2022 .

[29]  Daniel Lazard,et al.  Gröbner-Bases, Gaussian elimination and resolution of systems of algebraic equations , 1983, EUROCAL.

[30]  On the solvability of systems of bilinear equations in finite fields , 2009, 0903.1156.

[31]  Adi Shamir,et al.  Cryptanalysis of the HFE Public Key Cryptosystem by Relinearization , 1999, CRYPTO.

[32]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[33]  Jean Charles Faugère,et al.  A new efficient algorithm for computing Gröbner bases without reduction to zero (F5) , 2002, ISSAC '02.

[34]  Elham Kashefi,et al.  Fast Quantum Algorithm for Solving Multivariate Quadratic Equations , 2017, IACR Cryptol. ePrint Arch..