Atomic Layer Deposition in a Metal–Organic Framework: Synthesis, Characterization, and Performance of a Solid Acid

NU-1000, a zirconium-based metal–organic framework (MOF) featuring mesoporous channels, has been postsynthetically metalated via atomic layer deposition in a MOF (AIM) employing dimethylaluminum iso-propoxide ([AlMe2OiPr]2, DMAI), a milder precursor than widely used trimethylaluminum (AlMe3, TMA). The aluminum-modified NU-1000 (Al-NU-1000) has been characterized with a comprehensive suite of techniques that points to the formation of aluminum oxide clusters well dispersed through the framework and stabilized by confinement within small pores intrinsic to the NU-1000 structure. Experimental evidence allows for identification of spectroscopic similarities between Al-NU-1000 and γ-Al2O3. Density functional theory modeling provides structures and simulated spectra, the relevance of which can be assessed via comparison to experimental IR and EXAFS data. The catalytic performance of Al-NU-1000 has been benchmarked against γ-Al2O3, with promising results in terms of selectivity.

[1]  J. Elam,et al.  Atomic layer deposition-Sequential self-limiting surface reactions for advanced catalyst "bottom-up" synthesis , 2016 .

[2]  J. Hupp,et al.  Structural Transitions of the Metal-Oxide Nodes within Metal-Organic Frameworks: On the Local Structures of NU-1000 and UiO-66. , 2016, Journal of the American Chemical Society.

[3]  C. Hess,et al.  Nanoscale Structuring of Surfaces by Using Atomic Layer Deposition. , 2015, Angewandte Chemie.

[4]  S. K. Tripathi,et al.  Phase dependent thermal and spectroscopic responses of Al2O3 nanostructures with different morphogenesis. , 2015, Nanoscale.

[5]  Alex B. F. Martinson,et al.  Targeted Single-Site MOF Node Modification: Trivalent Metal Loading via Atomic Layer Deposition , 2015 .

[6]  N. Govind,et al.  Electronic and Chemical State of Aluminum from the Single- (K) and Double-Electron Excitation (KLII&III, KLI) X-ray Absorption Near-Edge Spectra of α-Alumina, Sodium Aluminate, Aqueous Al(3+)·(H2O)6, and Aqueous Al(OH)4(-). , 2015, The journal of physical chemistry. B.

[7]  James A. Dumesic,et al.  Catalyst Design with Atomic Layer Deposition , 2015 .

[8]  G. D. Paëpe,et al.  Primostrato Solid-State NMR Enhanced by Dynamic Nuclear Polarization: Pentacoordinated Al3+ Ions Are Only Located at the Surface of Hydrated γ-Alumina , 2014 .

[9]  Joshua Borycz,et al.  Defining the Proton Topology of the Zr6-Based Metal-Organic Framework NU-1000. , 2014, The journal of physical chemistry letters.

[10]  Mario Wriedt,et al.  Study of Guest Molecules in Metal–Organic Frameworks by Powder X-ray Diffraction: Analysis of Difference Envelope Density , 2014 .

[11]  Omar K Farha,et al.  Beyond post-synthesis modification: evolution of metal-organic frameworks via building block replacement. , 2014, Chemical Society reviews.

[12]  Donghai Mei,et al.  Quantitatively probing the Al distribution in zeolites. , 2014, Journal of the American Chemical Society.

[13]  V. Petříček,et al.  Crystallographic Computing System JANA2006: General features , 2014 .

[14]  K. Szeto,et al.  Heteronuclear NMR spectroscopy as a surface-selective technique: a unique look at the hydroxyl groups of γ-alumina. , 2014, Chemistry.

[15]  Junming Sun,et al.  Recent Advances in Catalytic Conversion of Ethanol to Chemicals , 2014 .

[16]  Michael O’Keeffe,et al.  The Chemistry and Applications of Metal-Organic Frameworks , 2013, Science.

[17]  S. Sen,et al.  Amorphous Alumina Nanoparticles: Structure, Surface Energy, and Thermodynamic Phase Stability , 2013 .

[18]  David Fairen-Jimenez,et al.  Vapor-phase metalation by atomic layer deposition in a metal-organic framework. , 2013, Journal of the American Chemical Society.

[19]  Minhua Zhang,et al.  Dehydration of Ethanol to Ethylene , 2013 .

[20]  Hong‐Cai Zhou,et al.  Generation and applications of structure envelopes for porous metal‒organic frameworks , 2013 .

[21]  Brian H. Toby,et al.  GSAS‐II: the genesis of a modern open‐source all purpose crystallography software package , 2013 .

[22]  G. S. Deverman,et al.  A variable ultra-short-pathlength solution cell for XAFS transmission spectroscopy of light elements. , 2012, Journal of synchrotron radiation.

[23]  E. Bylaska,et al.  Near-Quantitative Agreement of Model-Free DFT-MD Predictions with XAFS Observations of the Hydration Structure of Highly Charged Transition-Metal Ions. , 2012, The journal of physical chemistry letters.

[24]  Jun Wang,et al.  Assembly of γ-Alumina Nanorods via Supercritical Technology , 2012 .

[25]  Se Stephen Potts,et al.  Plasma-enhanced and thermal atomic layer deposition of Al2O3 using dimethylaluminum isopropoxide, [Al(CH3)2(μ-OiPr)]2, as an alternative aluminum precursor , 2012 .

[26]  C. Detavernier,et al.  Tailoring nanoporous materials by atomic layer deposition. , 2011, Chemical Society reviews.

[27]  K. Chapman,et al.  Elucidating the structure of surface acid sites on γ-Al2O3. , 2011, Journal of the American Chemical Society.

[28]  Anmin Zheng,et al.  Insights into the dealumination of zeolite HY revealed by sensitivity-enhanced 27Al DQ-MAS NMR spectroscopy at high field. , 2010, Angewandte Chemie.

[29]  Omar K Farha,et al.  Rational design, synthesis, purification, and activation of metal-organic framework materials. , 2010, Accounts of chemical research.

[30]  J. Rehr,et al.  Parameter-free calculations of X-ray spectra with FEFF9. , 2010, Physical chemistry chemical physics : PCCP.

[31]  S. George,et al.  Quartz crystal microbalance studies of Al2O3 atomic layer deposition using trimethylaluminum and water at 125 degrees C. , 2010, The journal of physical chemistry. A.

[32]  S. Kitagawa,et al.  Soft porous crystals. , 2009, Nature chemistry.

[33]  Chi Won Ahn,et al.  Structure of amorphous aluminum oxide. , 2009, Physical review letters.

[34]  Seth M. Cohen,et al.  Postsynthetic modification of metal-organic frameworks. , 2009, Chemical Society reviews.

[35]  Michael O'Keeffe,et al.  Secondary building units, nets and bonding in the chemistry of metal-organic frameworks. , 2009, Chemical Society reviews.

[36]  Xinsheng Liu DRIFTS Study of Surface of γ-Alumina and Its Dehydroxylation , 2008 .

[37]  Berend Smit,et al.  Towards a molecular understanding of shape selectivity , 2008, Nature.

[38]  Gérard Férey,et al.  Hybrid porous solids: past, present, future. , 2008, Chemical Society reviews.

[39]  Gervais Chapuis,et al.  SUPERFLIP– a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions , 2007 .

[40]  V. Langer,et al.  γ-Alumina: a single-crystal X-ray diffraction study , 2006 .

[41]  A. Vimont,et al.  Nature, structure and strength of the acidic sites of amorphous silica alumina: an IR and NMR study. , 2006, The journal of physical chemistry. B.

[42]  S. Trasatti,et al.  γ-Alumina as a Support for Catalysts: A Review of Fundamental Aspects , 2005 .

[43]  R. Tannenbaum,et al.  Size-controlled synthesis of alumina nanoparticles from aluminum alkoxides , 2005 .

[44]  M Newville,et al.  ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. , 2005, Journal of synchrotron radiation.

[45]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[46]  Simon J. L. Billinge,et al.  PDFgetX2: a GUI-driven program to obtain the pair distribution function from X-ray powder diffraction data , 2004 .

[47]  C. Grey,et al.  Surface modification of fluorinated aluminas: Application of solid state NMR spectroscopy to the study of acidity and surface structure , 2004 .

[48]  Atomic layer deposition of Al2O3 thin films using dimethylaluminum isopropoxide and water , 2003 .

[49]  Avelino Corma,et al.  State of the art and future challenges of zeolites as catalysts , 2003 .

[50]  Ki-Seok An,et al.  Preparation of Al 2 O 3 Thin Films by Atomic Layer Deposition Using Dimethylaluminum Isopropoxide and Water and Their Reaction Mechanisms , 2003 .

[51]  Brian H. Toby,et al.  EXPGUI, a graphical user interface for GSAS , 2001 .

[52]  M Newville,et al.  IFEFFIT: interactive XAFS analysis and FEFF fitting. , 2001, Journal of synchrotron radiation.

[53]  H. Kao,et al.  Probing the formation process of aluminiumhydroxide nanoparticles prepared by laser ablation with 27Al NMRspectroscopy , 2000 .

[54]  Thomas,et al.  Design, Synthesis, and In Situ Characterization of New Solid Catalysts. , 1999, Angewandte Chemie.

[55]  R. Anwander,et al.  Formation of Lewis Acidic Support Materials via Chemisorption of Trimethylaluminum on Mesoporous Silicate MCM-41 , 1998 .

[56]  Xinsheng Liu,et al.  DRFT-IR Studies of the Surface of γ-Alumina , 1997 .

[57]  P. Mardilovich,et al.  Structure of alumina surfaces , 1996 .

[58]  A. P. Hammersley,et al.  Two-dimensional detector software: From real detector to idealised image or two-theta scan , 1996 .

[59]  H. Stoll,et al.  Ab initio energy‐adjusted pseudopotentials for the noble gases Ne through Xe: Calculation of atomic dipole and quadrupole polarizabilities , 1995 .

[60]  M. Fleet,et al.  Molecular dynamics simulations of liquids and glasses in the system NaAlSiO4-SiO2: Methodology and melt structures , 1995 .

[61]  Avelino Corma,et al.  Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions , 1995 .

[62]  A. Barron,et al.  Dimethylaluminium alkoxides: a physico-chemical investigation , 1992 .

[63]  Armel Le Bail,et al.  Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction , 1988 .

[64]  P. Moore,et al.  Painite, CaZrB[Al 9 O 18 ]; its crystal structure and relation to jeremejevite, B 5 [ 3 Al 6 (OH) 3 O 15 ], and fluoborite, B 3 [Mg 9 (F,OH) 9 O 9 ] , 1976 .

[65]  A. Haaland,et al.  Studies of alkylmetal alkoxides of aluminium, gallium and indium , 1975 .

[66]  Martin B. Smith The monomer−dimer equilibria of liquid aliminum alkyls: III. Trimethylaluminum: the monomer−dimer equilibria of liquid and gaseous trimethylaluminum and triethylaluminum , 1972 .

[67]  J. Peri,et al.  SURFACE HYDROXYL GROUPS ON γ-ALUMINA1 , 1960 .