On the existance of minimizers of the variable exponent Dirichlet energy integral

In this note we consider the Dirichlet energy integral in the variable exponent case under minimal assumptions on the exponent. First we show that the Dirichlet energy integral always has a minimizer if the boundary values are in $L^\infty$. Second, we give an example which shows that if the so-called "jump-condition", known to be sufficient, is violated, then a minimizer need not exist for unbounded boundary values.

[1]  L. Diening,et al.  Calderón-Zygmund operators on generalized Lebesgue spaces $L^{p(\cdot)}$ and problems related to fluid dynamics , 2003 .

[2]  Giuseppe Mingione,et al.  Gradient estimates for the p (x)-Laplacean system , 2005 .

[3]  V. Zhikov,et al.  AVERAGING OF FUNCTIONALS OF THE CALCULUS OF VARIATIONS AND ELASTICITY THEORY , 1987 .

[4]  P. Hästö,et al.  A capacity approach to the Poincare inequality and Sobolev imbeddings in variable exponent Sobolev spaces , 2004 .

[5]  S. Samko,et al.  Maximal and Fractional Operators in Weighted $L^{p(x)}$ Spaces , 2004 .

[6]  D. Kinderlehrer,et al.  An introduction to variational inequalities and their applications , 1980 .

[7]  D. Cruz-Uribe,et al.  THE BOUNDEDNESS OF CLASSICAL OPERATORS ON VARIABLE L p SPACES , 2006 .

[8]  Peter Hästö,et al.  The Dirichlet Energy Integral and Variable Exponent Sobolev Spaces with Zero Boundary Values , 2006 .

[9]  Giuseppe Mingione,et al.  Hölder continuity of the gradient of p(x)-harmonic mappings , 1999 .

[10]  P. Hästö,et al.  The Dirichlet Energy Integral on Intervals in Variable Exponent Sobolev Spaces , 2003 .

[11]  A. Coscia,et al.  Hölder continuity of minimizers of functionals with variable growth exponent , 1997 .

[12]  J. Heinonen Lectures on Analysis on Metric Spaces , 2000 .

[13]  J. Heinonen,et al.  Nonlinear Potential Theory of Degenerate Elliptic Equations , 1993 .

[14]  M. Ruzicka,et al.  Electrorheological Fluids: Modeling and Mathematical Theory , 2000 .

[15]  Qihu Zhang,et al.  Eigenvalues of p(x)-Laplacian Dirichlet problem , 2005 .

[16]  Xianling Fan,et al.  Existence and multiplicity of solutions for p(x)-Laplacian equations in RN , 2004 .