Evidence for warming and thawing of discontinuous permafrost in Alaska

Data show that permafrost temperatures along a north–south transect of Alaska from Old Man to Gulkana and at Healy generally warmed in the late 1980s to 1996. This trend was not followed at Eagle, about 330 km east of the transect. Estimates of the magnitude of the warming at the permafrost table ranged from 0.5°C to 1.5°C. Warming rates near the permafrost table were about 0.05 to 0.2°C a−1. No reliable trends in the depth of the base of ice-bearing permafrost or in the depth of the 0°C isotherm could be detected. Thermal offset allowed mean annual temperatures at the permafrost table to remain below 0°C with ground surface temperatures up to 2.5°C for a period of 8 years. The observed warming has probably caused discontinuous permafrost in marginal areas to begin thawing. Thawing permafrost and thermokarst have been observed at several sites. Thawing rates at the permafrost table at two sites were about 0.1 m a−1, indicating time scales of the order of a century to thaw the top 10 metres of ice-rich permafrost. Calculated thawing rates at the permafrost base are an order of magnitude smaller. Calibrated numerical models indicate that the permafrost warmed in the late 1960s and early 1970s in response to changes in air temperatures and snow covers. Additional warming in the late 1970s was caused by an increase in air temperatures beginning in 1977. Permafrost temperatures were nearly stable during the 1980s and then warmed again from the late 1980s to 1996, primarily in response to increased snow depths. This interpretation appears to be valid for all the sites in the region of the transect and at Healy. Copyright © 1999 John Wiley & Sons, Ltd. Des donnees montrent que les temperatures du pergelisol selon un transect Nord–Sud au travers de l'Alaska de Old Man jusqu'a Gulkana et a Healy se sont generalement elevees depuis la fin des annees 80 jusqu'a 1996. Cette tendance ne se retrouve pas a Eagle, environ 330 km a l'Est du transect. Des estimations de l'amplitude du rechauffement au niveau de la table du pergelisol varient de 0.5°C a 1.5°C. Les vitesses du rechauffement pres de la table du pergelisol ont ete d'environ 0.05 a 0.2°C par an. Aucune tendance certaine a la base du pergelisol riche en glace ou a la profondeur de l'isotherme de 0°C n'a pu etre detectee. La compensation thermique a permis de maintenir la table du pergelisol sous 0°C bien que les temperatures de surface aient ete superieures a 2.5°C pendant une periode de 8 ans. Le rechauffement observe a probablement cause un debut de fonte dans des regions marginales du pergelisol discontinu. Le degel du pergelisol ainsi que des phenomees thermokarstiques ont ete observes dans plusieurs sites. Les vitesses de degel a la table du pergelisol en deux sites ont ete de l'ordre d'environ 0.1 m par an, indiquant une echelle de temps de l'ordre de un siecle pour degeler les 10 m sommitaux de pergelisol riche en glace. Les vitesses de degel calculees pour la base du pergelisol sont un ordre de grandeur plus petit. Des modeles numeriques calibres indiquent que le pergelisol s'est rechauffe dans les dernieres annees 60 et au debut des annees 70 en reponse aux changements des temperatures de l'air et ceux de la couverture de neige. Un rechauffement supplementaire a la fin des annees 70 a ete cause par une augmentation de la temperature de l'air qui a debute en 1977. Les temperatures du pergelisol ont ete presque stables pendant les annees 1980 et se sont rechauffees de nouveau depuis la fin des annees 1980 jusqu'a 1996, principalement a la suite d'une augmentation de l'epaisseur de neige. Cette interpretation parait valable pour tous les sites dans la region du transect et a Healy. Copyright © 1999 John Wiley & Sons, Ltd.

[1]  Barrie Maxwell,et al.  2 – Arctic Climate: Potential for Change under Global Warming , 1992 .

[2]  G. L. Guymon,et al.  Two-Dimensional Model of Coupled Heat and Moisture Transport in Frost-Heaving Soils , 1984 .

[3]  A. Lachenbruch,et al.  Changing Climate: Geothermal Evidence from Permafrost in the Alaskan Arctic , 1986, Science.

[4]  Michael W. Smith,et al.  Permafrost monitoring and detection of climate change , 1996 .

[5]  J. Hansen,et al.  Global trends of measured surface air temperature , 1987 .

[6]  Vladimir E. Romanovsky,et al.  Characteristics of Changing Permafrost Temperatures in the Alaskan Arctic, U.S.A. , 1996, Arctic and Alpine Research.

[7]  Vladimir E. Romanovsky,et al.  Interannual variations of the thermal regime of the active layer and near‐surface permafrost in northern Alaska , 1995 .

[8]  V. Romanovsky,et al.  Comments on permafrost monitoring and detection of climate change by Smith and Riseborough [7(4): 301–309, 1996] , 1998 .

[9]  Climatic warming and the degradation of warm permafrost , 1996 .

[10]  A. R. Tice,et al.  UNFROZEN WATER CONTENTS OF UNDISTURBED AND REMOLDED ALASKAN SILT AS DETERMINED BY NUCLEAR MAGNETIC RESONANCE , 1988 .

[11]  V. Romanovsky,et al.  An evaluation of three numerical models used in simulations of the active layer and permafrost temperature regimes , 1997 .

[12]  Hugh M. French,et al.  Climate controls and high‐altitude permafrost, qinghai‐xizang (tibet) Plateau, China , 1994 .

[13]  T. Hamilton Alaskan Temperature Fluctuations and Trends: An Analysis of Recorded Data , 1965 .

[14]  Thian Yew Gan,et al.  Northward migration of permafrost along the Mackenzie highway and climatic warming , 1994 .

[15]  G. L. Guymon,et al.  Finite element model of transient heat conduction with isothermal phase change : (two and three dimensional) , 1977 .

[16]  C. Burn,et al.  Observations of the "Thermal Offset" in Near-Surface Mean Annual Ground Temperatures at Several Sites near Mayo, Yukon Territory, Canada , 1988 .

[17]  Knut Stamnes,et al.  Influence of the depth hoar layer of the seasonal snow cover on the ground thermal regime , 1996 .

[18]  J. Gosink,et al.  Variations in permafrost thickness in response to changes in paleoclimate , 1991 .

[19]  Tingjun Zhang,et al.  Evidence for a cyclic variation of permafrost temperatures in northern alaska , 1994 .

[20]  A. V. Pavlov,et al.  Current changes of climate and permafrost in the arctic and sub-arctic of Russia , 1994 .

[21]  Stanley C. Solomon,et al.  Tolbert receives Macelwane medal , 1994 .

[22]  Vladimir E. Romanovsky,et al.  Thawing of the Active Layer on the Coastal Plain of the Alaskan Arctic , 1997 .

[23]  A. Lachenbruch,et al.  Permafrost, heat flow, and the geothermal regime at Prudhoe Bay, Alaska , 1982 .

[24]  R. J. E. Brown,et al.  Distribution of permafrost in North America and its relationship to the environment; A review, 1963-1973 , 1973 .

[25]  J. Gosink,et al.  MEASUREMENTS OF PERMAFROST TEMPERATURES TO EVALUATE THE CONSEQUENCES OF RECENT CLIMATE WARMING , 1988 .

[26]  T. E. Osterkamp,et al.  Thermal Regime of Permafrost in Alaska and Predicted Global Warming , 1990 .

[27]  V. Romanovsky,et al.  Freezing and thawing of soils under the influence of 300- and 90-year periods of temperature fluctuation , 1992 .