The Kalman-EM Contour Tracker

Many active-contour trackers include separate modules for feature detection, pose/shape refinement, and Kalman filtering. While this design is convenient for the programmer, it is not statistically optimal, because (a) feature detection leads to information loss and (b) the pose/shape refinement module makes no use of prior information from the filtering module. The tracker introduced in this paper employs the Bayesian EM algorithm for pose refinement: applying the EM algorithm to active contours eliminates the need for a separate feature-detection stage, while the Bayesian form of the EM algorithm provides a natural way to incorporate a prior estimate (from the filtering stage) into the pose refinement stage. Performance comparisons show that the Bayesian EM Contour algorithm is faster and more robust than modular contour trackers. The advantage of the Bayesian EM Contour algorithm over particle filtering is demonstrated by the much smaller number of function evaluations needed to achieve comparable tracking performance.

[1]  Y. Bar-Shalom Tracking and data association , 1988 .

[2]  D. Lowe Fitting Parameterized 3-D Models to Images , 1989 .

[3]  John E. Howland,et al.  Computer graphics , 1990, IEEE Potentials.

[4]  G. Sullivan Natural and artificial low-level seeing systems - Visual interpretation of known objects in constrained scenes , 1992 .

[5]  Chris Harris,et al.  Tracking with rigid models , 1993 .

[6]  David C. Hogg,et al.  Learning Flexible Models from Image Sequences , 1994, ECCV.

[7]  Hans-Hellmut Nagel,et al.  3D pose estimation by fitting image gradients directly to polyhedral models , 1995, Proceedings of IEEE International Conference on Computer Vision.

[8]  Geoffrey D. Sullivan,et al.  Pose and Structure Recovery using Active Models , 1995, BMVC.

[9]  Donald Geman,et al.  An Active Testing Model for Tracking Roads in Satellite Images , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[11]  Keith D. Baker,et al.  Visual surveillance using deformable models of vehicles , 1997, Robotics Auton. Syst..

[12]  Anthony D. Worrall,et al.  A statistically-based Newton method for pose refinement , 1998, Image Vis. Comput..

[13]  Andrew Blake,et al.  A probabilistic contour discriminant for object localisation , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[14]  Anthony D. Worrall,et al.  A Newton method for pose refinement of 3D models , 1998 .

[15]  Michael Isard,et al.  Active Contours , 2000, Springer London.

[16]  David Mumford,et al.  Statistics of natural images and models , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[17]  Alan L. Yuille,et al.  Fundamental Limits of Bayesian Inference: Order Parameters and Phase Transitions for Road Tracking , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Paulo R. S. Mendonça,et al.  Model-based 3D tracking of an articulated hand , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[19]  Arthur E. C. Pece,et al.  Generative-model-based tracking by cluster analysis of image differences , 2002, Robotics Auton. Syst..

[20]  Anthony D. Worrall,et al.  Tracking with the EM Contour Algorithm , 2002, ECCV.

[21]  Dan Witzner Hansen,et al.  Iris tracking with feature free contours , 2003, 2003 IEEE International SOI Conference. Proceedings (Cat. No.03CH37443).

[22]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[23]  Michael J. Black,et al.  Learning the Statistics of People in Images and Video , 2003, International Journal of Computer Vision.

[24]  Hans-Hellmut Nagel,et al.  Model-based object tracking in monocular image sequences of road traffic scenes , 1993, International Journal of Computer 11263on.

[25]  A. Pece,et al.  Tracking without Feature Detection , 2007 .

[26]  David G. Lowe,et al.  Perceptual Organization and Visual Recognition , 2012 .