Three-dimensional formulation of rigid-flexible multibody systems with flexible beam elements
暂无分享,去创建一个
D. García-Vallejo | J. Mayo | J. L. Escalona | J. Mayo | J. Domínguez | J. Escalona | D. García-Vallejo | J. Domínguez
[1] R. Y. Yakoub,et al. Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Implementation and Applications , 2001 .
[2] Edward J. Haug,et al. Elements and Methods of Computational Dynamics , 1984 .
[3] A. Shabana. Computer Implementation of the Absolute Nodal Coordinate Formulation for Flexible Multibody Dynamics , 1998 .
[4] A. Mikkola,et al. Description of Elastic Forces in Absolute Nodal Coordinate Formulation , 2003 .
[5] J. C. Simo,et al. A three-dimensional finite-strain rod model. Part II: Computational aspects , 1986 .
[6] Aki Mikkola,et al. A two-dimensional shear deformable beam element based on the absolute nodal coordinate formulation , 2005 .
[7] A. Shabana,et al. Definition of the Elastic Forces in the Finite-Element Absolute Nodal Coordinate Formulation and the Floating Frame of Reference Formulation , 2001 .
[8] Alejo Avello Iturriagagoitia. Dinamica de mecanismos flexibles con coordenadas cartesianas y teoria de grandes deformaciones , 1990 .
[9] J. G. Jalón,et al. Dynamic Analysis of Three-Dimensional Mechanisms in “Natural” Coordinates , 1987 .
[10] B. J. Hsieh,et al. Non-Linear Transient Finite Element Analysis with Convected Co--ordinates , 1973 .
[11] Oleg Dmitrochenko,et al. Generalization of Plate Finite Elements for Absolute Nodal Coordinate Formulation , 2003 .
[12] Javier García de Jalón,et al. Kinematic and Dynamic Simulation of Multibody Systems: The Real Time Challenge , 1994 .
[13] J. Mayo,et al. Geometrically non-linear formulation of flexible multibody systems in terms of beam elements: Geometric stiffness , 1996 .
[14] Tamer M. Wasfy,et al. Computational strategies for flexible multibody systems , 2003 .
[15] Javier García de Jalón,et al. Computer method for kinematic analysis of lower-pair mechanisms—II position problems , 1981 .
[16] Mohamed A. Omar,et al. A TWO-DIMENSIONAL SHEAR DEFORMABLE BEAM FOR LARGE ROTATION AND DEFORMATION PROBLEMS , 2001 .
[17] Ahmed A. Shabana,et al. Application of the Absolute Nodal Coordinate Formulation to Large Rotation and Large Deformation Problems , 1998 .
[18] E. Haug. Computer Aided Analysis and Optimization of Mechanical System Dynamics , 1984 .
[19] Ahmed A. Shabana,et al. Flexible Multibody Dynamics: Review of Past and Recent Developments , 1997 .
[20] Aki Mikkola,et al. Three-Dimensional Beam Element Based on a Cross-Sectional Coordinate System Approach , 2006 .
[21] Arend L. Schwab,et al. Comparison of Three-Dimensional Flexible Beam Elements for Dynamic Analysis: Finite Element Method and Absolute Nodal Coordinate Formulation , 2005 .
[22] A. Mikkola,et al. Studies on the Stiffness Properties of the Absolute Nodal Coordinate Formulation for Three-Dimensional Beams , 2003 .
[23] A. Shabana,et al. Cross-Section Deformation in the Absolute Nodal Coordinate Formulation , 2005 .
[24] R. Y. Yakoub,et al. Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Theory , 2001 .
[25] J. C. Simo,et al. On the Dynamics of Flexible Beams Under Large Overall Motions—The Plane Case: Part II , 1986 .
[26] A. Shabana,et al. DEVELOPMENT OF SIMPLE MODELS FOR THE ELASTIC FORCES IN THE ABSOLUTE NODAL CO-ORDINATE FORMULATION , 2000 .
[27] Ahmed A. Shabana,et al. Dynamics of Multibody Systems , 2020 .
[28] Aki Mikkola,et al. A Non-Incremental Finite Element Procedure for the Analysis of Large Deformation of Plates and Shells in Mechanical System Applications , 2003 .
[29] Hiroyuki Sugiyama,et al. Formulation of Three-Dimensional Joint Constraints Using the Absolute Nodal Coordinates , 2003 .
[30] M. A. Serna,et al. Computer method for kinematic analysis of lower-pair mechanisms—I velocities and accelerations , 1981 .
[31] J. C. Simo,et al. A finite strain beam formulation. The three-dimensional dynamic problem. Part I , 1985 .
[32] B. Paul,et al. Computer Analysis of Machines With Planar Motion: Part 1—Kinematics , 1970 .
[33] J. G. Jalón,et al. A comparative study on some different formulations of the dynamic equations of constrained mechanical systems , 1987 .
[34] J. G. Jalón,et al. Flexible Multibody Dynamics Based on a Fully Cartesian System of Support Coordinates , 1993 .
[35] Ahmed A. Shabana,et al. APPLICATION OF THE ABSOLUTE NODAL CO-ORDINATE FORMULATION TO MULTIBODY SYSTEM DYNAMICS , 1997 .
[36] A. Shabana. Finite Element Incremental Approach and Exact Rigid Body Inertia , 1995 .
[37] J. Mayo,et al. Efficient Evaluation of the Elastic Forces and the Jacobian in the Absolute Nodal Coordinate Formulation , 2004 .
[38] J. Mayo,et al. Describing Rigid-Flexible Multibody Systems Using Absolute Coordinates , 2003 .