Three-dimensional formulation of rigid-flexible multibody systems with flexible beam elements

Multibody systems generally contain solids with appreciable deformations and which decisively influence the dynamics of the system. These solids have to be modeled by means of special formulations for flexible solids. At the same time, other solids are of such a high stiffness that they may be considered rigid, which simplifies their modeling. For these reasons, for a rigid-flexible multibody system, two types of formulations coexist in the equations of the system. Among the different possibilities provided in the literature on the material, the formulation in natural coordinates and the formulation in absolute nodal coordinates are utilized in this paper to model the rigid and flexible solids, respectively. This paper contains a mixed formulation based on the possibility of sharing coordinates between a rigid solid and a flexible solid. The global mass matrix of the system is shown to be constant and, in addition, many of the constraint equations obtained upon utilizing these formulations are linear and can be eliminated.

[1]  R. Y. Yakoub,et al.  Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Implementation and Applications , 2001 .

[2]  Edward J. Haug,et al.  Elements and Methods of Computational Dynamics , 1984 .

[3]  A. Shabana Computer Implementation of the Absolute Nodal Coordinate Formulation for Flexible Multibody Dynamics , 1998 .

[4]  A. Mikkola,et al.  Description of Elastic Forces in Absolute Nodal Coordinate Formulation , 2003 .

[5]  J. C. Simo,et al.  A three-dimensional finite-strain rod model. Part II: Computational aspects , 1986 .

[6]  Aki Mikkola,et al.  A two-dimensional shear deformable beam element based on the absolute nodal coordinate formulation , 2005 .

[7]  A. Shabana,et al.  Definition of the Elastic Forces in the Finite-Element Absolute Nodal Coordinate Formulation and the Floating Frame of Reference Formulation , 2001 .

[8]  Alejo Avello Iturriagagoitia Dinamica de mecanismos flexibles con coordenadas cartesianas y teoria de grandes deformaciones , 1990 .

[9]  J. G. Jalón,et al.  Dynamic Analysis of Three-Dimensional Mechanisms in “Natural” Coordinates , 1987 .

[10]  B. J. Hsieh,et al.  Non-Linear Transient Finite Element Analysis with Convected Co--ordinates , 1973 .

[11]  Oleg Dmitrochenko,et al.  Generalization of Plate Finite Elements for Absolute Nodal Coordinate Formulation , 2003 .

[12]  Javier García de Jalón,et al.  Kinematic and Dynamic Simulation of Multibody Systems: The Real Time Challenge , 1994 .

[13]  J. Mayo,et al.  Geometrically non-linear formulation of flexible multibody systems in terms of beam elements: Geometric stiffness , 1996 .

[14]  Tamer M. Wasfy,et al.  Computational strategies for flexible multibody systems , 2003 .

[15]  Javier García de Jalón,et al.  Computer method for kinematic analysis of lower-pair mechanisms—II position problems , 1981 .

[16]  Mohamed A. Omar,et al.  A TWO-DIMENSIONAL SHEAR DEFORMABLE BEAM FOR LARGE ROTATION AND DEFORMATION PROBLEMS , 2001 .

[17]  Ahmed A. Shabana,et al.  Application of the Absolute Nodal Coordinate Formulation to Large Rotation and Large Deformation Problems , 1998 .

[18]  E. Haug Computer Aided Analysis and Optimization of Mechanical System Dynamics , 1984 .

[19]  Ahmed A. Shabana,et al.  Flexible Multibody Dynamics: Review of Past and Recent Developments , 1997 .

[20]  Aki Mikkola,et al.  Three-Dimensional Beam Element Based on a Cross-Sectional Coordinate System Approach , 2006 .

[21]  Arend L. Schwab,et al.  Comparison of Three-Dimensional Flexible Beam Elements for Dynamic Analysis: Finite Element Method and Absolute Nodal Coordinate Formulation , 2005 .

[22]  A. Mikkola,et al.  Studies on the Stiffness Properties of the Absolute Nodal Coordinate Formulation for Three-Dimensional Beams , 2003 .

[23]  A. Shabana,et al.  Cross-Section Deformation in the Absolute Nodal Coordinate Formulation , 2005 .

[24]  R. Y. Yakoub,et al.  Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Theory , 2001 .

[25]  J. C. Simo,et al.  On the Dynamics of Flexible Beams Under Large Overall Motions—The Plane Case: Part II , 1986 .

[26]  A. Shabana,et al.  DEVELOPMENT OF SIMPLE MODELS FOR THE ELASTIC FORCES IN THE ABSOLUTE NODAL CO-ORDINATE FORMULATION , 2000 .

[27]  Ahmed A. Shabana,et al.  Dynamics of Multibody Systems , 2020 .

[28]  Aki Mikkola,et al.  A Non-Incremental Finite Element Procedure for the Analysis of Large Deformation of Plates and Shells in Mechanical System Applications , 2003 .

[29]  Hiroyuki Sugiyama,et al.  Formulation of Three-Dimensional Joint Constraints Using the Absolute Nodal Coordinates , 2003 .

[30]  M. A. Serna,et al.  Computer method for kinematic analysis of lower-pair mechanisms—I velocities and accelerations , 1981 .

[31]  J. C. Simo,et al.  A finite strain beam formulation. The three-dimensional dynamic problem. Part I , 1985 .

[32]  B. Paul,et al.  Computer Analysis of Machines With Planar Motion: Part 1—Kinematics , 1970 .

[33]  J. G. Jalón,et al.  A comparative study on some different formulations of the dynamic equations of constrained mechanical systems , 1987 .

[34]  J. G. Jalón,et al.  Flexible Multibody Dynamics Based on a Fully Cartesian System of Support Coordinates , 1993 .

[35]  Ahmed A. Shabana,et al.  APPLICATION OF THE ABSOLUTE NODAL CO-ORDINATE FORMULATION TO MULTIBODY SYSTEM DYNAMICS , 1997 .

[36]  A. Shabana Finite Element Incremental Approach and Exact Rigid Body Inertia , 1995 .

[37]  J. Mayo,et al.  Efficient Evaluation of the Elastic Forces and the Jacobian in the Absolute Nodal Coordinate Formulation , 2004 .

[38]  J. Mayo,et al.  Describing Rigid-Flexible Multibody Systems Using Absolute Coordinates , 2003 .