Learning from Few Examples for Visual Recognition Problems

The lack of training data is one of the core problems and limiting factors in many industrial and high-level vision tasks. Despite the human ability of quickly generalizing from often just a single example of an object category, current computer vision systems require a large number of visual examples to learn from. The following work deals with this problem and two paradigms are considered to tackle it: transfer learning and one-class classification. The idea of transfer learning is that prior information from related tasks can be used to improve learning of a new task with few training examples. In this work, several transfer learning approaches are presented, which concentrate on transferring different types of knowledge from related tasks. The presented regularized tree method extends decision tree methods by incorporating prior knowledge from previously built trees of other tasks. Another proposed algorithm transfers feature relevance information to guide the search for suitable base classifiers during learning of a random decision forest. In addition, a third developed approach utilizes dependent Gaussian processes and allows for non-parametric transfer learning. Furthermore, a technique is presented that automatically selects a related task from a large set of tasks and estimates the required degree of transfer. The method is able to adaptively learn in heterogeneous environments and is based on efficient leave-one-out estimates and semantic similarities . All methods are analyzed in different scenarios (binary and multi-class transfer learning) and are applied to image categorization. Significant performance benefits are shown in comparison with current transfer learning methods and to classifiers not exploiting knowledge transfer. Another very difficult problem occurs when training data is only available for a single class. To solve this problem, new efficient one-class classification methods are presented, which are directly derived from the Gaussian process framework and allow flexible learning with kernels. The suitability of the proposed algorithms for a wide range of applications is demonstrated for image categorization and action detection tasks, as well as the demanding application of defect localization in wire ropes. The experimental results show that the proposed methods are able to outperform other one-class classification methods. In addition, the influence of kernel hyperparameters is investigated. A further study analyzes the performance gain achieved by using multiple sensors (color camera and time-of-flight camera) for generic object recognition. The presented combined system leads to a superior recognition performance compared to previous approaches.

[1]  Matthias W. Seeger,et al.  Bayesian Gaussian process models : PAC-Bayesian generalisation error bounds and sparse approximations , 2003 .

[2]  Jean-Marc Odobez,et al.  Constructing Visual Models with a Latent Space Approach , 2005, SLSFS.

[3]  J. Denzler,et al.  Efficient Gaussian process classification using random decision forests , 2011, Pattern Recognition and Image Analysis.

[4]  John Platt,et al.  Probabilistic Outputs for Support vector Machines and Comparisons to Regularized Likelihood Methods , 1999 .

[5]  Joachim Denzler,et al.  On the Suitability of Different Features for Anomaly Detection in Wire Ropes , 2009, VISIGRAPP.

[6]  Edwin V. Bonilla,et al.  Multi-task Gaussian Process Prediction , 2007, NIPS.

[7]  Robert P. W. Duin,et al.  Support Vector Data Description , 2004, Machine Learning.

[8]  Erik G. Learned-Miller,et al.  Data driven image models through continuous joint alignment , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Thomas Deselaers,et al.  Randomized trees for real-time one-step face detection and recognition , 2008, 2008 19th International Conference on Pattern Recognition.

[10]  Andrew Zisserman,et al.  Scene Classification Using a Hybrid Generative/Discriminative Approach , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Cordelia Schmid,et al.  Dataset Issues in Object Recognition , 2006, Toward Category-Level Object Recognition.

[12]  Juan José Rodríguez Diez,et al.  An Experimental Study on Rotation Forest Ensembles , 2007, MCS.

[13]  Cristian Sminchisescu,et al.  Efficient Match Kernel between Sets of Features for Visual Recognition , 2009, NIPS.

[14]  Shimon Ullman,et al.  Uncovering shared structures in multiclass classification , 2007, ICML '07.

[15]  Gabriela Csurka,et al.  A Simple High Performance Approach to Semantic Segmentation , 2008, BMVC.

[16]  Dianguo Xu,et al.  A New Method of Defects Identification for Wire Rope Based on Three-Dimensional Magnetic Flux Leakage , 2006 .

[17]  Tin Kam Ho,et al.  The Random Subspace Method for Constructing Decision Forests , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Heiko Hoffmann,et al.  Kernel PCA for novelty detection , 2007, Pattern Recognit..

[19]  Fabio Tozeto Ramos,et al.  Multi-Kernel Gaussian Processes , 2011, IJCAI.

[20]  A. Atiya,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2005, IEEE Transactions on Neural Networks.

[21]  Cordelia Schmid,et al.  Semi-Local Affine Parts for Object Recognition , 2004, BMVC.

[22]  C. Rasmussen,et al.  Approximations for Binary Gaussian Process Classification , 2008 .

[23]  Alexei A. Efros,et al.  Geometric context from a single image , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[24]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[25]  Yoshua Bengio,et al.  Zero-data Learning of New Tasks , 2008, AAAI.

[26]  Thomas Hofmann,et al.  Multi‐class Classification with Dependent Gaussian Processes , 2007 .

[27]  Young-Sik Choi,et al.  Least squares one-class support vector machine , 2009, Pattern Recognit. Lett..

[28]  Hermann Ney,et al.  Improving a Discriminative Approach to Object Recognition Using Image Patches , 2005, DAGM-Symposium.

[29]  Stefano Soatto,et al.  A Complexity-Distortion Approach to Joint Pattern Alignment , 2006, NIPS.

[30]  Ivan Laptev,et al.  Improving bag-of-features action recognition with non-local cues , 2010, BMVC.

[31]  Antonio Torralba,et al.  Sharing Visual Features for Multiclass and Multiview Object Detection , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Christoph H. Lampert,et al.  Weakly-Paired Maximum Covariance Analysis for Multimodal Dimensionality Reduction and Transfer Learning , 2010, ECCV.

[33]  Trevor Darrell,et al.  Transfer learning for image classification with sparse prototype representations , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[34]  Masashi Sugiyama,et al.  Semi-supervised speaker identification under covariate shift , 2010, Signal Process..

[35]  Shai Ben-David,et al.  Localization vs. Identification of Semi-Algebraic Sets , 1993, COLT.

[36]  Juan Carlos Niebles,et al.  Unsupervised Learning of Human Action Categories , 2006 .

[37]  Rainer Lienhart,et al.  Image retrieval on large-scale image databases , 2007, CIVR '07.

[38]  Andrea J. van Doorn,et al.  Surface shape and curvature scales , 1992, Image Vis. Comput..

[39]  Carl E. Rasmussen,et al.  Gaussian Mixture Modeling with Gaussian Process Latent Variable Models , 2010, DAGM-Symposium.

[40]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[41]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[42]  Antonio Torralba,et al.  Contextual Priming for Object Detection , 2003, International Journal of Computer Vision.

[43]  J. Mercer Functions of positive and negative type, and their connection with the theory of integral equations , 1909 .

[44]  Daphne Koller,et al.  Learning a meta-level prior for feature relevance from multiple related tasks , 2007, ICML '07.

[45]  Richard Szeliski,et al.  Building Rome in a day , 2009, ICCV.

[46]  J. Kiefer,et al.  Sequential minimax search for a maximum , 1953 .

[47]  Harold Mouchère,et al.  Learning a Classifier with Very Few Examples: Analogy Based and Knowledge Based Generation of New Examples for Character Recognition , 2007, ECML.

[48]  Mohamed Cheriet,et al.  Estimating accurate multi-class probabilities with support vector machines , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..

[49]  Håkan Ringbom,et al.  Language transfer. Cross-linguistic influence in language learning , 1990 .

[50]  Cordelia Schmid,et al.  A Discriminative Framework for Texture and Object Recognition Using Local Image Features , 2006, Toward Category-Level Object Recognition.

[51]  Gabriela Csurka,et al.  Visual categorization with bags of keypoints , 2002, eccv 2004.

[52]  Changchang Wu,et al.  SiftGPU : A GPU Implementation of Scale Invariant Feature Transform (SIFT) , 2007 .

[53]  Pietro Perona,et al.  Object class recognition by unsupervised scale-invariant learning , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[54]  Bernt Schiele,et al.  What helps where – and why? Semantic relatedness for knowledge transfer , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[55]  Doaa Abd al-Kareem Mohammed Hegazy,et al.  Boosting for generic 2D/3D object recognition , 2010 .

[56]  Erik G. Learned-Miller,et al.  Unsupervised Joint Alignment of Complex Images , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[57]  Pietro Perona,et al.  One-shot learning of object categories , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[58]  Robert P. W. Duin,et al.  On Combining One-Class Classifiers for Image Database Retrieval , 2002, Multiple Classifier Systems.

[59]  Roberto Cipolla,et al.  Semantic texton forests for image categorization and segmentation , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[60]  Andrew Zisserman,et al.  Representing shape with a spatial pyramid kernel , 2007, CIVR '07.

[61]  Ajay Kumar,et al.  Computer-Vision-Based Fabric Defect Detection: A Survey , 2008, IEEE Transactions on Industrial Electronics.

[62]  Neil D. Lawrence,et al.  Transferring Nonlinear Representations using Gaussian Processes with a Shared Latent Space , 2008 .

[63]  Svetlana Lazebnik,et al.  Comparing data-dependent and data-independent embeddings for classification and ranking of Internet images , 2011, CVPR 2011.

[64]  Cordelia Schmid,et al.  A Comparison of Affine Region Detectors , 2005, International Journal of Computer Vision.

[65]  Barbara Caputo,et al.  The More You Know, the Less You Learn: From Knowledge Transfer to One-shot Learning of Object Categories , 2009, BMVC.

[66]  Joachim Denzler,et al.  Combining Appearance and Range Based Information for Multi-class Generic Object Recognition , 2009, CIARP.

[67]  Richard Szeliski,et al.  Computer Vision - Algorithms and Applications , 2011, Texts in Computer Science.

[68]  Bernt Schiele,et al.  Combining Language Sources and Robust Semantic Relatedness for Attribute-Based Knowledge Transfer , 2010, ECCV Workshops.

[69]  Sebastian Thrun,et al.  3D shape scanning with a time-of-flight camera , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[70]  Thomas Martinetz,et al.  Shading constraint improves accuracy of time-of-flight measurements , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[71]  Kian Ming Adam Chai Generalization Errors and Learning Curves for Regression with Multi-task Gaussian Processes , 2009, NIPS.

[72]  Boris Babenko,et al.  Weakly Supervised Object Localization with Stable Segmentations , 2008, ECCV.

[73]  Pierre Geurts,et al.  Extremely randomized trees , 2006, Machine Learning.

[74]  Thomas Hofmann,et al.  Unsupervised Learning by Probabilistic Latent Semantic Analysis , 2004, Machine Learning.

[75]  Joachim Denzler,et al.  Learning with Few Examples using a Constrained Gaussian Prior on Randomized Trees , 2008, VMV.

[76]  Erik G. Learned-Miller,et al.  Online domain adaptation of a pre-trained cascade of classifiers , 2011, CVPR 2011.

[77]  Robert P. W. Duin,et al.  Uniform Object Generation for Optimizing One-class Classifiers , 2002, J. Mach. Learn. Res..

[78]  Joachim Denzler,et al.  HMM-Based Defect Localization in Wire Ropes - A New Approach to Unusual Subsequence Recognition , 2009, DAGM-Symposium.

[79]  Wei Chu,et al.  Gaussian Process Models for Link Analysis and Transfer Learning , 2007, NIPS.

[80]  Shimon Ullman,et al.  Identifying semantically equivalent object fragments , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[81]  Michael Goesele,et al.  A shape-based object class model for knowledge transfer , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[82]  Thomas S. Huang,et al.  One-class SVM for learning in image retrieval , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[83]  Cordelia Schmid,et al.  Semantic Hierarchies for Visual Object Recognition , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[84]  Gang Wang,et al.  Using Dependent Regions for Object Categorization in a Generative Framework , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[85]  Ron Kohavi,et al.  Irrelevant Features and the Subset Selection Problem , 1994, ICML.

[86]  Olaf Kähler,et al.  On fusion of range and intensity information using Graph-Cut for planar patch segmentation , 2008, Int. J. Intell. Syst. Technol. Appl..

[87]  Dong Han,et al.  Selection and context for action recognition , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[88]  Y. Freund,et al.  Discussion of the Paper \additive Logistic Regression: a Statistical View of Boosting" By , 2000 .

[89]  Bernt Schiele,et al.  Evaluating knowledge transfer and zero-shot learning in a large-scale setting , 2011, CVPR 2011.

[90]  Giuseppe De Nicolao,et al.  Bayesian Online Multitask Learning of Gaussian Processes , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[91]  Sebastian Thrun,et al.  Learning to Learn , 1998, Springer US.

[92]  Sethu Vijayakumar,et al.  Multi-task Gaussian Process Learning of Robot Inverse Dynamics , 2008, NIPS.

[93]  Gunnar Rätsch,et al.  Large Scale Multiple Kernel Learning , 2006, J. Mach. Learn. Res..

[94]  David M. J. Tax,et al.  One-class classification , 2001 .

[95]  Igor Guskov,et al.  3D object recognition from range images using pyramid matching , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[96]  Dit-Yan Yeung,et al.  Semi-Supervised Multi-Task Regression , 2009, ECML/PKDD.

[97]  Charles A. Harlow,et al.  Automated Visual Inspection: A Survey , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[98]  Samuel Kaski,et al.  Learning from Relevant Tasks Only , 2007, ECML.

[99]  Joachim Denzler,et al.  One-Shot Learning of Object Categories Using Dependent Gaussian Processes , 2010, DAGM-Symposium.

[100]  Florian Steinke,et al.  Bayesian Inference and Optimal Design in the Sparse Linear Model , 2007, AISTATS.

[101]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[102]  Bernhard Schölkopf,et al.  Estimating the Support of a High-Dimensional Distribution , 2001, Neural Computation.

[103]  Pietro Perona,et al.  Mutual Boosting for Contextual Inference , 2003, NIPS.

[104]  Frédéric Jurie,et al.  Creating efficient codebooks for visual recognition , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[105]  Cordelia Schmid,et al.  A Spatio-Temporal Descriptor Based on 3D-Gradients , 2008, BMVC.

[106]  Trevor Darrell,et al.  The Pyramid Match Kernel: Efficient Learning with Sets of Features , 2007, J. Mach. Learn. Res..

[107]  Thomas Deselaers,et al.  Visual and semantic similarity in ImageNet , 2011, CVPR 2011.

[108]  Antonio Torralba,et al.  LabelMe: A Database and Web-Based Tool for Image Annotation , 2008, International Journal of Computer Vision.

[109]  Christoph H. Lampert,et al.  Learning to detect unseen object classes by between-class attribute transfer , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[110]  Zhigang Zhang,et al.  Three-dimensional intelligent sensing based on the PMD technology , 2001, Remote Sensing.

[111]  Mark Goadrich,et al.  The relationship between Precision-Recall and ROC curves , 2006, ICML.

[112]  Ann L. Brown,et al.  Preschool children can learn to transfer: Learning to learn and learning from example , 1988, Cognitive Psychology.

[113]  Rong Jin,et al.  Distance Metric Learning: A Comprehensive Survey , 2006 .

[114]  Paul A. Viola,et al.  Learning from one example through shared densities on transforms , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[115]  Heinrich Niemann Pattern Analysis and Understanding , 1990 .

[116]  Lawrence Carin,et al.  Multi-Task Learning for Classification with Dirichlet Process Priors , 2007, J. Mach. Learn. Res..

[117]  Frédéric Jurie,et al.  Fast Discriminative Visual Codebooks using Randomized Clustering Forests , 2006, NIPS.

[118]  Antonio Torralba,et al.  Semi-Supervised Learning in Gigantic Image Collections , 2009, NIPS.

[119]  Cordelia Schmid,et al.  Selection of scale-invariant parts for object class recognition , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[120]  Neil D. Lawrence,et al.  Probabilistic Non-linear Principal Component Analysis with Gaussian Process Latent Variable Models , 2005, J. Mach. Learn. Res..

[121]  Jean-Philippe Vert,et al.  Consistency and Convergence Rates of One-Class SVMs and Related Algorithms , 2006, J. Mach. Learn. Res..

[122]  Tom Minka,et al.  A family of algorithms for approximate Bayesian inference , 2001 .

[123]  Shih-Fu Chang,et al.  Fast kernel learning for spatial pyramid matching , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[124]  Daphna Weinshall,et al.  Exploiting Object Hierarchy: Combining Models from Different Category Levels , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[125]  Philip Resnik,et al.  Using Information Content to Evaluate Semantic Similarity in a Taxonomy , 1995, IJCAI.

[126]  Ingo Mierswa,et al.  Efficient Case Based Feature Construction for Heterogeneous Learning Tasks , 2006 .

[127]  Joachim Denzler,et al.  An Analysis-by-Synthesis Approach to Rope Condition Monitoring , 2010, ISVC.

[128]  Massimiliano Pontil,et al.  Multi-Task Feature Learning , 2006, NIPS.

[129]  Shimon Ullman,et al.  Cross-generalization: learning novel classes from a single example by feature replacement , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[130]  J. Paul Siebert,et al.  Local feature extraction and matching on range images: 2.5D SIFT , 2009, Comput. Vis. Image Underst..

[131]  Trevor Darrell,et al.  Learning Visual Representations using Images with Captions , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[132]  Charles A. Micchelli,et al.  Learning Multiple Tasks with Kernel Methods , 2005, J. Mach. Learn. Res..

[133]  Qiang Yang,et al.  A Survey on Transfer Learning , 2010, IEEE Transactions on Knowledge and Data Engineering.

[134]  Anton Schwaighofer,et al.  Learning Gaussian Process Kernels via Hierarchical Bayes , 2004, NIPS.

[135]  Liang-Tien Chia,et al.  Motion Context: A New Representation for Human Action Recognition , 2008, ECCV.

[136]  Massimiliano Pontil,et al.  An Algorithm for Transfer Learning in a Heterogeneous Environment , 2008, ECML/PKDD.

[137]  Trevor Darrell,et al.  The pyramid match kernel: discriminative classification with sets of image features , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[138]  Felipe Cucker,et al.  On the mathematical foundations of learning , 2001 .

[139]  Frédéric Jurie,et al.  Sampling Strategies for Bag-of-Features Image Classification , 2006, ECCV.

[140]  George Kingsley Zipf,et al.  Human behavior and the principle of least effort , 1949 .

[141]  Cordelia Schmid,et al.  Spatial Weighting for Bag-of-Features , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[142]  Vincent Lepetit,et al.  Randomized trees for real-time keypoint recognition , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[143]  Antonio Torralba,et al.  Ieee Transactions on Pattern Analysis and Machine Intelligence 1 80 Million Tiny Images: a Large Dataset for Non-parametric Object and Scene Recognition , 2022 .

[144]  Barbara Caputo,et al.  Recognizing human actions: a local SVM approach , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[145]  Li Fei-Fei Knowledge transfer in learning to recognize visual objects classes , 2006 .

[146]  Joachim Denzler,et al.  Learning with Few Examples by Transferring Feature Relevance , 2009, DAGM-Symposium.

[147]  Joachim Denzler,et al.  Robustness of Different Features for One-class Classification and Anomaly Detection in Wire Ropes , 2009, VISAPP.

[148]  Antonio Torralba,et al.  Statistics of natural image categories , 2003, Network.

[149]  Roberto Cipolla,et al.  Extracting Spatiotemporal Interest Points using Global Information , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[150]  Gang Wang,et al.  Comparative object similarity for improved recognition with few or no examples , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[151]  David A. McAllester,et al.  A discriminatively trained, multiscale, deformable part model , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[152]  C. V. Jawahar,et al.  Generalized RBF feature maps for Efficient Detection , 2010, BMVC.

[153]  Thomas P. Minka,et al.  Bayesian model averaging is not model combination , 2002 .

[154]  David G. Stork,et al.  Pattern classification, 2nd Edition , 2000 .

[155]  Geoffrey E. Hinton,et al.  Zero-shot Learning with Semantic Output Codes , 2009, NIPS.

[156]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machines , 2002 .

[157]  Shih-Fu Chang,et al.  Kernel Sharing With Joint Boosting For Multi-Class Concept Detection , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[158]  Steve R. Gunn,et al.  Identifying Feature Relevance Using a Random Forest , 2005, SLSFS.

[159]  Trevor Darrell,et al.  Gaussian Processes for Object Categorization , 2010, International Journal of Computer Vision.

[160]  Joachim Denzler,et al.  Learning with few examples for binary and multiclass classification using regularization of randomized trees , 2011, Pattern Recognit. Lett..

[161]  Frédéric Jurie,et al.  Learning Visual Similarity Measures for Comparing Never Seen Objects , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[162]  José Blasco,et al.  Computer vision detection of peel defects in citrus by means of a region oriented segmentation algorithm , 2007 .

[163]  Joachim Denzler,et al.  Randomized Probabilistic Latent Semantic Analysis for Scene Recognition , 2009, CIARP.

[164]  Trevor Darrell,et al.  Approximate Correspondences in High Dimensions , 2006, NIPS.

[165]  Yoram Singer,et al.  Online and batch learning of pseudo-metrics , 2004, ICML.

[166]  Thomas Martinetz,et al.  Scale-invariant range features for time-of-flight camera applications , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[167]  Yunhong Wang,et al.  Faceprint: Fusion of Local Features for 3D Face Recognition , 2009, ICB.

[168]  Erik G. Learned-Miller,et al.  Learning to Locate Informative Features for Visual Identification , 2008, International Journal of Computer Vision.

[169]  Michael Brady,et al.  Novelty detection for the identification of masses in mammograms , 1995 .

[170]  Sebastian Thrun,et al.  Is Learning The n-th Thing Any Easier Than Learning The First? , 1995, NIPS.

[171]  I. Biederman Recognition-by-components: a theory of human image understanding. , 1987, Psychological review.

[172]  Derek Hoiem,et al.  3D LayoutCRF for Multi-View Object Class Recognition and Segmentation , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[173]  Lixin Fan,et al.  Categorizing Nine Visual Classes using Local Appearance Descriptors , 2004 .

[174]  Andrea Vedaldi,et al.  Objects in Context , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[175]  Robert Lange,et al.  3D time-of-flight distance measurement with custom solid-state image sensors in CMOS/CCD-technology , 2006 .

[176]  Ron Kohavi,et al.  The Case against Accuracy Estimation for Comparing Induction Algorithms , 1998, ICML.

[177]  Victoria J. Hodge,et al.  A Survey of Outlier Detection Methodologies , 2004, Artificial Intelligence Review.

[178]  Bernt Schiele,et al.  3D object recognition from range images using local feature histograms , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[179]  Koby Crammer,et al.  Learning Algorithm for Enclosing Points in Bregmanian Spheres , 2003, COLT.

[180]  Trevor Darrell,et al.  Adapting Visual Category Models to New Domains , 2010, ECCV.

[181]  G. Griffin,et al.  Caltech-256 Object Category Dataset , 2007 .

[182]  Yair Weiss,et al.  Learning object detection from a small number of examples: the importance of good features , 2004, CVPR 2004.

[183]  Michel Vidal-Naquet,et al.  Visual features of intermediate complexity and their use in classification , 2002, Nature Neuroscience.

[184]  Sebastian Thrun,et al.  Real time motion capture using a single time-of-flight camera , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[185]  Ricardo Vilalta,et al.  Metalearning - Applications to Data Mining , 2008, Cognitive Technologies.

[186]  Joachim Denzler,et al.  Global Context Extraction for Object Recognition Using a Combination of Range and Visual Features , 2009, Dyn3D.

[187]  John Shawe-Taylor,et al.  Bounding Sample Size with the Vapnik-Chervonenkis Dimension , 1993, Discrete Applied Mathematics.

[188]  Antonio Torralba,et al.  LabelMe: Online Image Annotation and Applications , 2010, Proceedings of the IEEE.

[189]  Shimon Ullman,et al.  Object recognition with informative features and linear classification , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[190]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[191]  Stefano Soatto,et al.  Joint data alignment up to (lossy) transformations , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[192]  Cordelia Schmid,et al.  Coloring Local Feature Extraction , 2006, ECCV.

[193]  Masoud Nikravesh,et al.  Feature Extraction: Foundations and Applications (Studies in Fuzziness and Soft Computing) , 2006 .

[194]  Sebastian Thrun,et al.  Discovering Structure in Multiple Learning Tasks: The TC Algorithm , 1996, ICML.

[195]  Fei-Fei Li,et al.  ImageNet: A large-scale hierarchical image database , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[196]  Cristian Sminchisescu,et al.  Random Fourier Approximations for Skewed Multiplicative Histogram Kernels , 2010, DAGM-Symposium.

[197]  Murat Dundar,et al.  A machine‐learning approach to detecting unknown bacterial serovars , 2010, Stat. Anal. Data Min..

[198]  Cordelia Schmid,et al.  Learning realistic human actions from movies , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[199]  Koen E. A. van de Sande,et al.  Evaluating Color Descriptors for Object and Scene Recognition , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[200]  Giulio Sandini,et al.  Model adaptation with least-squares SVM for adaptive hand prosthetics , 2009, 2009 IEEE International Conference on Robotics and Automation.

[201]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[202]  Shimon Ullman,et al.  Satellite Features for the Classification of Visually Similar Classes , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[203]  Joost van de Weijer,et al.  Edge and corner detection by photometric quasi-invariants , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[204]  Fei-Fei Li,et al.  Online detection of unusual events in videos via dynamic sparse coding , 2011, CVPR 2011.

[205]  Joachim Denzler,et al.  Analysis of Structural Dependencies for the Automatic Visual Inspection of Wire Ropes , 2010, VMV.

[206]  Joachim Denzler,et al.  A Fast Approach for Pixelwise Labeling of Facade Images , 2010, 2010 20th International Conference on Pattern Recognition.

[207]  James Bennett,et al.  The Netflix Prize , 2007 .

[208]  Shimon Ullman,et al.  From Aardvark to Zorro: A Benchmark for Mammal Image Classification , 2008, International Journal of Computer Vision.

[209]  Christophe G. Giraud-Carrier,et al.  Transfer Learning in Decision Trees , 2007, 2007 International Joint Conference on Neural Networks.

[210]  Joachim Denzler,et al.  Selection of Relevant Features for Raman Spectroscopy , 2012 .

[211]  Steven M. Seitz,et al.  Photo tourism: exploring photo collections in 3D , 2006, ACM Trans. Graph..

[212]  Harold W. Kuhn,et al.  The Hungarian method for the assignment problem , 1955, 50 Years of Integer Programming.

[213]  Dieter Fox,et al.  Kernel Descriptors for Visual Recognition , 2010, NIPS.

[214]  Yoram Singer,et al.  Online multiclass learning by interclass hypothesis sharing , 2006, ICML.

[215]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[216]  E. Rodner,et al.  Automatic identification of novel bacteria using Raman spectroscopy and Gaussian processes. , 2013, Analytica chimica acta.

[217]  David M. J. Tax,et al.  Kernel Whitening for One-Class Classification , 2003, Int. J. Pattern Recognit. Artif. Intell..

[218]  Joachim M. Buhmann,et al.  Learning the Compositional Nature of Visual Objects , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[219]  Rajat Raina,et al.  Abstract , 1997, Veterinary Record.

[220]  Trevor Darrell,et al.  Sparse probabilistic regression for activity-independent human pose inference , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[221]  Cordelia Schmid,et al.  Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[222]  Ivan Laptev,et al.  On Space-Time Interest Points , 2005, International Journal of Computer Vision.

[223]  Frédéric Jurie,et al.  Learning Saliency Maps for Object Categorization , 2006 .

[224]  Tong Zhang,et al.  A Framework for Learning Predictive Structures from Multiple Tasks and Unlabeled Data , 2005, J. Mach. Learn. Res..

[225]  David Beymer,et al.  Face recognition from one example view , 1995, Proceedings of IEEE International Conference on Computer Vision.

[226]  Joachim Denzler,et al.  Combining Structure and Appearance for Anomaly Detection in Wire Ropes , 2011, CAIP.

[227]  Hyun-Chul Kim,et al.  Pseudo-density Estimation for Clustering with Gaussian Processes , 2006, ISNN.

[228]  Christoph H. Lampert,et al.  Optimizing one-shot recognition with micro-set learning , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[229]  Ryan P. Adams,et al.  The Gaussian Process Density Sampler , 2008, NIPS.

[230]  Zhi-Hua Zhou,et al.  Face recognition from a single image per person: A survey , 2006, Pattern Recognit..

[231]  Ali Farhadi,et al.  Attribute-centric recognition for cross-category generalization , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[232]  Neil D. Lawrence,et al.  Extensions of the Informative Vector Machine , 2004, Deterministic and Statistical Methods in Machine Learning.

[233]  Paul A. Viola,et al.  Robust Real-time Object Detection , 2001 .

[234]  Volker Roth,et al.  Kernel Fisher Discriminants for Outlier Detection , 2006, Neural Computation.

[235]  C. Lawrence Zitnick,et al.  The role of features, algorithms and data in visual recognition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[236]  Joachim Denzler,et al.  One-class classification with Gaussian processes , 2010, Pattern Recognit..

[237]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[238]  Stephan R. Sain,et al.  Multi-dimensional Density Estimation , 2004 .

[239]  Ali Farhadi,et al.  Describing objects by their attributes , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[240]  Yee Whye Teh,et al.  Semiparametric latent factor models , 2005, AISTATS.

[241]  Joachim Denzler,et al.  Challenging Anomaly Detection in Wire Ropes Using Linear Prediction Combined with One-class Classification , 2008, VMV.

[242]  Juan Carlos Niebles,et al.  Spatial-Temporal correlatons for unsupervised action classification , 2008, 2008 IEEE Workshop on Motion and video Computing.

[243]  Ajay Kumar,et al.  Defect detection in textured materials using optimized filters , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[244]  Volker Tresp,et al.  Robust multi-task learning with t-processes , 2007, ICML '07.

[245]  Joachim Denzler,et al.  Multiple kernel Gaussian process classification for generic 3D object recognition , 2010, 2010 25th International Conference of Image and Vision Computing New Zealand.

[246]  Qiang Yang,et al.  Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10) Adaptive Transfer Learning , 2022 .

[247]  Edwin V. Bonilla,et al.  Kernel Multi-task Learning using Task-specific Features , 2007, AISTATS.