Template-assisted electrochemical synthesis of cuprous oxide nanowires

Abstract Nanowires of Cu 2 O as well as Cu were synthesized within the anodic aluminum oxide templates in an aqueous acidic electrochemical cell. The content of Cu 2 O in the copper nanowires was controlled by varying the anodic potential of the pulse-reverse electrolysis and the pH of the electrolyte within a range of 2.0–3.9. For the pH of 2.0, pure Cu nanowires were deposited regardless of the anodic potential. When the anodic potential became higher than the cathodic one, pure Cu 2 O nanowires were produced at a pH of 3.9. The growth of Cu 2 O nanowires in the acidic electrolyte was ascribed to the local increase of the pH at the pore base, as well as the capacitive barrier layer of the template.

[1]  M. Shumsky,et al.  Electrochemical Growth of a Cu2O/PbS Epitaxial Heterojunction on Single Crystal Au(100) , 2000 .

[2]  Jin Yu,et al.  Size-dependent thermal instability and melting behavior of Sn nanowires , 2007 .

[3]  Jaeyoung Lee,et al.  Electrodeposition of Cu2O nanowires using nanoporous alumina template , 2004 .

[4]  张哉根,et al.  Leu-M , 1991 .

[5]  Richard N. Briskman,et al.  A study of electrodeposited cuprous oxide photovoltaic cells , 1992 .

[6]  Y. Matsumoto,et al.  Electrodeposition of TiO2 photocatalyst into nano-pores of hard alumite , 2001 .

[7]  K. Jüttner,et al.  AC-impedance measurements on porous aluminium oxide films , 1984 .

[8]  Yanchun Zhou,et al.  Electrochemical Deposition and Microstructure of Copper (I) Oxide Films , 1998 .

[9]  R. C. Furneaux,et al.  The formation of controlled-porosity membranes from anodically oxidized aluminium , 1989, Nature.

[10]  B. Beverskog,et al.  Revised Pourbaix Diagrams for Copper at 25 to 300°C , 1997 .

[11]  Craig A. Grimes,et al.  Synthesis of CuO and Cu_2O crystalline nanowires using Cu(OH)_2 nanowire templates , 2003 .

[12]  P. Chu,et al.  Cu oxide nanowire array grown on Si-based SiO2 nanoscale islands via nanochannels , 2004 .

[13]  P. D. Jongh,et al.  Cu2O: Electrodeposition and Characterization , 1999 .

[14]  M. Shumsky,et al.  Potential Oscillations During the Electrochemical Self-assembly of Copper/Cuprous Oxide Layered Nanostructures , 1998 .

[15]  N. Chopra,et al.  Selective growth and kinetic study of copper oxide nanowires from patterned thin-film multilayer structures , 2007 .

[16]  Y. Qian,et al.  Efficient field emission from well-oriented Cu2O film , 2005 .

[17]  L. Piraux,et al.  Electrochemical self-assembly of Cu/Cu 2 O nanowires , 2002 .

[18]  K. Fung,et al.  Fabrication of Cu/Cu2O composite nanowire arrays on Si via AAO template-mediated electrodeposition , 2007 .

[19]  V. Birss,et al.  Impedance Characterization of Anodic Barrier Al Oxide Film Beneath Porous Oxide Layer , 2006 .

[20]  Wenzhong Wang,et al.  Synthesis and Characterization of Cu2O Nanowires by a Novel Reduction Route , 2002 .

[21]  E. Mishina,et al.  Self-Assembled Cu/Cu2O Multilayers: Deposition, Structure and Optical Properties , 2001 .

[22]  T. Gao,et al.  Electrochemical synthesis of copper nanowires , 2002 .

[23]  A. Jagminas,et al.  Concentration effect of the solutions for alumina template ac filling by metal arrays , 2003 .