Quantitative Homogenization for the Case of an Interface Between Two Heterogeneous Media

In this article we are interested in quantitative homogenization results for linear elliptic equations in the non-stationary situation of a straight interface between two heterogenous media. This extends the previous work [Josien, 2019] to a substantially more general setting, in which the surrounding heterogeneous media may be periodic or random stationary and ergodic. Our main result is a quantification of the sublinearity of a homogenization corrector adapted to the interface, which we construct using an improved version of the method developed in [Fischer and Raithel, 2017]. This quantification is optimal up to a logarithmic loss and allows to derive almost-optimal convergence rates.

[1]  Approximation locale précisée dans des problèmes multi-échelles avec défauts localisés , 2019, Comptes Rendus Mathematique.

[2]  P. Lions,et al.  Local Profiles for Elliptic Problems at Different Scales: Defects in, and Interfaces between Periodic Structures , 2015 .

[3]  F. Lin,et al.  Periodic Homogenization of Green and Neumann Functions , 2014 .

[4]  Julian Fischer,et al.  Liouville Principles and a Large-Scale Regularity Theory for Random Elliptic Operators on the Half-Space , 2017, SIAM J. Math. Anal..

[5]  A. Lorenzi On elliptic equations with piecewise constant coefficients , 1972 .

[6]  Louis Nirenberg,et al.  Estimates for elliptic systems from composite material , 2003 .

[7]  N. Bakhvalov,et al.  Homogenisation: Averaging Processes in Periodic Media , 1989 .

[8]  M. Vogelius,et al.  Gradient Estimates for Solutions to Divergence Form Elliptic Equations with Discontinuous Coefficients , 2000 .

[9]  C. Raithel A Large-Scale Regularity Theory for Random Elliptic Operators on the Half-Space with Homogeneous Neumann Boundary Data , 2017, 1703.04328.

[10]  M. Avellaneda,et al.  Compactness methods in the theory of homogenization , 1987 .

[11]  N. Bakhvalov,et al.  Homogenisation: Averaging Processes in Periodic Media: Mathematical Problems in the Mechanics of Composite Materials , 1989 .

[12]  Marc Josien Some quantitative homogenization results in a simple case of interface , 2019, Communications in Partial Differential Equations.

[13]  G. Allaire,et al.  Shape optimization by the homogenization method , 1997 .

[14]  V. Zhikov,et al.  Homogenization of Differential Operators and Integral Functionals , 1994 .

[15]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[16]  Jindřich Nečas,et al.  Sur une méthode pour résoudre les équations aux dérivées partielles du type elliptique, voisine de la variationnelle , 1961 .

[17]  F. Otto,et al.  A higher-order large-scale regularity theory for random elliptic operators , 2015, 1503.07578.

[18]  F. Otto,et al.  A Regularity Theory for Random Elliptic Operators , 2014, Milan Journal of Mathematics.

[19]  Zhongwei Shen,et al.  Lipschitz Estimates in Almost‐Periodic Homogenization , 2014, 1409.2094.

[20]  P. Lions,et al.  On correctors for linear elliptic homogenization in the presence of local defects , 2018, Communications in Partial Differential Equations.

[21]  Peter Bella,et al.  Green's function for elliptic systems: Moment bounds , 2018, Networks Heterog. Media.