Conductivity of nanoporous InP membranes investigated using terahertz spectroscopy

We report on extrinsic and photoexcited carrier behaviour in porous InP of various porosities and two orientations, studied using terahertz spectroscopy. We observed behaviour indicative of a surface electron depletion layer resulting from bandbending.

[1]  W. Chou,et al.  Built-in electric field and surface Fermi level in InP surface-intrinsic n+ structures by modulation spectroscopy , 1997 .

[2]  David J. Lockwood,et al.  Visible photoluminescence from porous GaAs , 1996 .

[3]  Ion Tiginyanu,et al.  Porosity-induced blueshift of photoluminescence in CdSe , 2006 .

[4]  Chennupati Jagadish,et al.  Transient Terahertz Conductivity of GaAs Nanowires , 2007 .

[5]  Veaceslav Ursaki,et al.  Porosity-induced gain of luminescence in CdSe , 2004 .

[6]  H. Föll,et al.  Observation of crossing pores in anodically etched n-GaAs , 2001 .

[7]  R. Boyd,et al.  Artificial birefringence introduced by porosity in GaP , 2005 .

[8]  Ion Tiginyanu,et al.  A comparison of pores in silicon and pores in III–V compound materials , 2003 .

[9]  Matthew C. Beard,et al.  Size-Dependent Photoconductivity in CdSe Nanoparticles as Measured by Time-Resolved Terahertz Spectroscopy , 2002 .

[10]  C. Jagadish,et al.  Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs , 2006, cond-mat/0610567.

[11]  Hans L. Hartnagel,et al.  Fröhlich modes in porous III-V semiconductors , 2001 .

[12]  I. M. Tiginyanu,et al.  Engineering porous III-Vs11In principle, international norms demand to call porous structures with pore sizes < 2nm — microporous. , 2003 .

[13]  Charles A Schmuttenmaer,et al.  Exploring dynamics in the far-infrared with terahertz spectroscopy. , 2004, Chemical reviews.

[14]  Ion Tiginyanu,et al.  Enhanced terahertz emission from porous InP (111) membranes , 2005 .

[15]  Ion Tiginyanu,et al.  Self-organized growth of single crystals of nanopores , 2003 .

[16]  Masanori Hangyo,et al.  Measurement of optical properties of highly doped silicon by terahertz time domain reflection spectroscopy , 2001 .

[17]  J. Coutaz,et al.  A reliable method for extraction of material parameters in terahertz time-domain spectroscopy , 1996 .

[18]  Alan Mills Nanometer-resolution 3D optical microscopy for III–V quality control , 2003 .

[19]  Hans L. Hartnagel,et al.  Semiconductor sieves as nonlinear optical materials , 2000 .

[20]  Edmund H. Linfield,et al.  Low-energy vibrational modes in phenylene oligomers studied by THz time-domain spectroscopy , 2003 .

[21]  H. Föll,et al.  Formation and application of porous silicon , 2002 .

[22]  Veaceslav Ursaki,et al.  Temperature dependence of Raman scattering in porous gallium phosphide , 2001 .

[23]  Ion Tiginyanu,et al.  Porous III-V compounds as nonlinear optical materials , 2003 .

[24]  D. Grischkowsky,et al.  Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors , 1990 .

[25]  D. Chemla,et al.  Ultrafast terahertz probes of transient conducting and insulating phases in an electron–hole gas , 2003, Nature.

[26]  L. Canham Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers , 1990 .

[27]  Ion Tiginyanu,et al.  Pores in III–V Semiconductors , 2003 .

[28]  H. Hartnagel,et al.  Correlation between morphology and cathodoluminescence in porous GaP , 2001 .

[29]  V. Sundström,et al.  Influence of plasmons on terahertz conductivity measurements , 2005 .