Isotopic analysis of coexisting Late Jurassic fish otoliths and molluscs: Implications for upper-ocean water temperature estimates

Ophosphate of fi sh teeth are ABSTRACT The δ 18 O compositions of well-preserved Jurassic fi sh otoliths from Wootton Bassett, UK, provide upper-ocean paleotemperatures that are comparable with those derived from the iso- topic analysis of fitooth phosphates, providing independent scrutiny of such paleotempera- tures. δ 18 O otolith temperatures in excess of 30 °C also rival temperatures associated with the middle Cretaceous thermal maximum. The negative carbon isotopes of the otoliths may point to a freshwater infl uence and potentially migratory nature of the fi sh. However, given the large departures from equilibrium fractionation toward more negative carbon values reported from modern marine fi sh, we consider our temperature interpretations to be robust and representa- tive of the marine depositional environment. Depleted δ 13 C values, we believe, suggest that the otoliths examined in this study belong to fiwith high metabolic rates.

[1]  G. Price,et al.  A carbon and oxygen isotopic analysis of molluscan faunas from the Callovian-Oxfordian boundary at Redcliff Point, Weymouth, Dorset: implications for belemnite behaviour , 2008 .

[2]  G. Ramstein,et al.  Fish tooth δ18O revising Late Cretaceous meridional upper ocean water temperature gradients , 2007 .

[3]  Gerald R. Smith,et al.  Life history reconstruction of modern and fossil sockeye salmon ( Oncorhynchus nerka) by oxygen isotopic analysis of otoliths, vertebrae, and teeth: Implication for paleoenvironmental reconstructions , 2006 .

[4]  G. Price,et al.  Isotopic signals from late Jurassic–early Cretaceous (Volgian–Valanginian) sub-Arctic belemnites, Yatria River, Western Siberia , 2004, Journal of the Geological Society.

[5]  C. Lécuyer,et al.  Carbon and oxygen isotope composition of Nautilus macromphalus: a record of thermocline waters off New Caledonia , 2004 .

[6]  G. Dromart,et al.  Thermal evolution of Tethyan surface waters during the Middle‐Late Jurassic: Evidence from δ18O values of marine fish teeth , 2003 .

[7]  G. Rose,et al.  Influence of swimming form on otolith δ13C in marine fish , 2003 .

[8]  J. Wright New exposures of the Ampthill Clay near Swindon, Wiltshire, and their significance within the succession of Oxfordian/Kimmeridgian boundary beds in southern England , 2003 .

[9]  R. Norris,et al.  Testing the Cretaceous greenhouse hypothesis using glassy foraminiferal calcite from the core of the Turonian tropics on Demerara Rise , 2002 .

[10]  E. Hiatt,et al.  Sedimentary phosphate formation in warm shallow waters: new insights into the palaeoceanography of the Permian Phosphoria Sea from analysis of phosphate oxygen isotopes , 2001 .

[11]  Christopher J. Nicholas,et al.  Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs , 2001, Nature.

[12]  G. Benz,et al.  Isotopic composition of recent shark teeth as a proxy for environmental conditions , 2001 .

[13]  A. Denis,et al.  La diagenese des otolithes par la comparaison des donnees microstructurales, mineralogiques et geochimiques; application aux fossiles du Pliocene du Sud-Est de la France , 2000 .

[14]  I. Harding,et al.  Sourcing mudsprings using integrated palaeontological analyses: an example from Wootton Bassett, Wiltshire, England , 2000 .

[15]  I. Wilkinson,et al.  The lithostratigraphy, biostratigraphy and hydrogeological significance of the mud springs at Templars Firs, Wootton Bassett, Wiltshire , 2000 .

[16]  W. Patterson Oldest isotopically characterized fish otoliths provide insight to Jurassic continental climate of Europe , 1999 .

[17]  C. Lécuyer,et al.  δ18O values of coexisting brachiopods and fish: Temperature differences and estimates of paleo–water depths , 1998 .

[18]  S. Campana,et al.  Factors determining δ13C and δ18O fractionation in aragonitic otoliths of marine fish , 1997 .

[19]  R. Klein,et al.  Bivalve skeletons record sea-surface temperature and δ18O via Mg/Ca and 18O/16O ratios , 1996 .

[20]  D. Hodell,et al.  Middle–Late Cretaceous climate of the southern high latitudes: Stable isotopic evidence for minimal equator-to-pole thermal gradients , 1995 .

[21]  L. M. Walter,et al.  Depletion of 13C in seawater ΣC02 on modern carbonate platforms: Significance for the carbon isotopic record of carbonates , 1994 .

[22]  J. D. Hudson,et al.  The stable isotopic records of fossils from the Peterborough Member, Oxford Clay Formation (Jurassic), UK: palaeoenvironmental implications , 1994, Journal of the Geological Society.

[23]  J. D. Hudson,et al.  The Lower Oxford Clay: production and preservation of organic matter in the Callovian (Jurassic) of central England , 1991, Geological Society, London, Special Publications.

[24]  J. Kalish 13C and 18O isotopic disequilibria in fish otoliths: metabolic and kinetic effects , 1991 .

[25]  Y. Kolodny,et al.  Oxygen isotopes in phosphatic fish remains from Israel: Paleothermometry of tropical cretaceous and tertiary shelf waters , 1988 .

[26]  T. Ku,et al.  OXYGEN AND CARBON ISOTOPE FRACTIONATION IN BIOGENIC ARAGONITE: TEMPERATURE EFFECTS , 1986 .

[27]  T. Anderson,et al.  Stable Isotopes of Oxygen and Carbon and their Application to Sedimentologic and Paleoenvironmental Problems , 1983 .