Pressureless Euler alignment system with control

We study a non-local hydrodynamic system with control. First we characterize the control dynamics as a sub-optimal approximation to the optimal control problem constrained to the evolution of the pressureless Euler alignment system. We then discuss the critical thresholds that leading to global regularity or finite-time blow-up of strong solutions in one and two dimensions. Finally we propose a finite volume scheme for numerical solutions of the controlled system. Several numerical simulations are shown to validate the theoretical and computational results of the paper.

[1]  Massimo Fornasier,et al.  Mean Field Control Hierarchy , 2016, Applied Mathematics & Optimization.

[2]  G. Russo,et al.  Implicit-explicit runge-kutta schemes and applications to hyperbolic systems with relaxation , 2005 .

[3]  Benedetto Piccoli,et al.  Multiscale Modeling of Granular Flows with Application to Crowd Dynamics , 2010, Multiscale Model. Simul..

[4]  Giacomo Albi,et al.  Invisible Control of Self-Organizing Agents Leaving Unknown Environments , 2015, SIAM J. Appl. Math..

[5]  Seung‐Yeal Ha,et al.  A quest toward a mathematical theory of the dynamics of swarms , 2017 .

[6]  Lorenzo Pareschi,et al.  Kinetic description of optimal control problems and applications to opinion consensus , 2014, 1401.7798.

[7]  F. Bouchut ON ZERO PRESSURE GAS DYNAMICS , 1996 .

[8]  M. Herty,et al.  Numerical method for optimal control problems governed by nonlinear hyperbolic systems of PDEs , 2015 .

[9]  Jos'e A. Carrillo,et al.  A Review on Attractive–Repulsive Hydrodynamics for Consensus in Collective Behavior , 2016, 1605.00232.

[10]  Nicola Bellomo,et al.  Toward a Mathematical Theory of Behavioral-Social Dynamics for Pedestrian Crowds , 2014, 1411.0907.

[11]  B. Piccoli,et al.  Multiscale Modeling of Pedestrian Dynamics , 2014 .

[12]  Felipe Cucker,et al.  Emergent Behavior in Flocks , 2007, IEEE Transactions on Automatic Control.

[13]  Alfio Borzì,et al.  Modeling and control through leadership of a refined flocking system , 2015 .

[14]  M. Fornasier,et al.  Mean-Field Optimal Control , 2013, 1306.5913.

[15]  Michael Hinze Instantaneous Closed Loop Control of the Navier-Stokes System , 2005, SIAM J. Control. Optim..

[16]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[17]  Massimo Fornasier,et al.  Un)conditional consensus emergence under perturbed and decentralized feedback controls , 2015 .

[18]  Rinaldo M. Colombo,et al.  On the Control of Moving Sets: Positive and Negative Confinement Results , 2013, SIAM J. Control. Optim..

[19]  F. Tröltzsch Optimal Control of Partial Differential Equations: Theory, Methods and Applications , 2010 .

[20]  Nicola Bellomo,et al.  On the Modeling of Traffic and Crowds: A Survey of Models, Speculations, and Perspectives , 2011, SIAM Rev..

[21]  Seung-Yeal Ha,et al.  A hydrodynamic model for the interaction of Cucker–Smale particles and incompressible fluid , 2014 .

[22]  Eitan Tadmor,et al.  Critical thresholds in flocking hydrodynamics with non-local alignment , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[23]  Giacomo Dimarco,et al.  Self-alignment driven by jump processes: Macroscopic limit and numerical investigation , 2016 .

[24]  G. Parisi,et al.  Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study , 2007, Proceedings of the National Academy of Sciences.

[25]  B. Piccoli,et al.  Mean-field sparse Jurdjevic-Quinn control , 2017, 1701.01316.

[26]  Massimo Fornasier,et al.  Mean-Field Pontryagin Maximum Principle , 2015, J. Optim. Theory Appl..

[27]  M. Fornasier,et al.  Sparse stabilization and optimal control of the Cucker-Smale model , 2013 .

[28]  H. Chaté,et al.  Onset of collective and cohesive motion. , 2004, Physical review letters.

[29]  E. Tadmor,et al.  From particle to kinetic and hydrodynamic descriptions of flocking , 2008, 0806.2182.

[30]  Eitan Tadmor,et al.  Critical thresholds in 1D Euler equations with nonlocal forces , 2014, 1411.1791.

[31]  G Albi,et al.  Boltzmann-type control of opinion consensus through leaders , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[32]  Andrea L. Bertozzi,et al.  c ○ World Scientific Publishing Company A STATISTICAL MODEL OF CRIMINAL BEHAVIOR , 2008 .

[33]  Massimo Fornasier,et al.  Particle, kinetic, and hydrodynamic models of swarming , 2010 .

[34]  Mattia Bongini,et al.  Optimal Control Problems in Transport Dynamics , 2016, 1609.07323.

[35]  Alexander Kurganov,et al.  A New Sticky Particle Method for Pressureless Gas Dynamics , 2007, SIAM J. Numer. Anal..

[36]  Massimo Fornasier,et al.  Mean-field sparse optimal control , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[37]  Sébastien Motsch,et al.  Heterophilious Dynamics Enhances Consensus , 2013, SIAM Rev..

[38]  J. Carrillo,et al.  Double milling in self-propelled swarms from kinetic theory , 2009 .

[39]  Adelinde M. Uhrmacher,et al.  Interacting multi-agent and simulation systems: an exploration into mole and james , 2001, AGENTS '01.

[40]  Seung-Yeal Ha,et al.  Emergent Behavior of a Cucker-Smale Type Particle Model With Nonlinear Velocity Couplings , 2010, IEEE Transactions on Automatic Control.

[41]  Bertrand Maury,et al.  Handling congestion in crowd motion modeling , 2011, Networks Heterog. Media.

[42]  B. Perthame Transport Equations in Biology , 2006 .

[43]  Guy Theraulaz,et al.  Self-Organization in Biological Systems , 2001, Princeton studies in complexity.

[44]  Juan Soler,et al.  ON THE MATHEMATICAL THEORY OF THE DYNAMICS OF SWARMS VIEWED AS COMPLEX SYSTEMS , 2012 .

[45]  Chi-Wang Shu,et al.  Discontinuous Galerkin method for Krause's consensus models and pressureless Euler equations , 2013, J. Comput. Phys..

[46]  L. Grüne,et al.  Nonlinear Model Predictive Control : Theory and Algorithms. 2nd Edition , 2011 .

[47]  Eitan Tadmor,et al.  Solution of two‐dimensional Riemann problems for gas dynamics without Riemann problem solvers , 2002 .

[48]  Young-Pil Choi,et al.  The global Cauchy problem for compressible Euler equations with a nonlocal dissipation , 2018, Mathematical Models and Methods in Applied Sciences.