Pointwise Visual Field Estimation From Optical Coherence Tomography in Glaucoma Using Deep Learning

Purpose Standard automated perimetry is the gold standard to monitor visual field (VF) loss in glaucoma management, but it is prone to intrasubject variability. We trained and validated a customized deep learning (DL) regression model with Xception backbone that estimates pointwise and overall VF sensitivity from unsegmented optical coherence tomography (OCT) scans. Methods DL regression models have been trained with four imaging modalities (circumpapillary OCT at 3.5 mm, 4.1 mm, and 4.7 mm diameter) and scanning laser ophthalmoscopy en face images to estimate mean deviation (MD) and 52 threshold values. This retrospective study used data from patients who underwent a complete glaucoma examination, including a reliable Humphrey Field Analyzer (HFA) 24-2 SITA Standard (SS) VF exam and a SPECTRALIS OCT. Results For MD estimation, weighted prediction averaging of all four individuals yielded a mean absolute error (MAE) of 2.89 dB (2.50–3.30) on 186 test images, reducing the baseline by 54% (MAEdecr%). For 52 VF threshold values’ estimation, the weighted ensemble model resulted in an MAE of 4.82 dB (4.45–5.22), representing an MAEdecr% of 38% from baseline when predicting the pointwise mean value. DL managed to explain 75% and 58% of the variance (R2) in MD and pointwise sensitivity estimation, respectively. Conclusions Deep learning can estimate global and pointwise VF sensitivities that fall almost entirely within the 90% test–retest confidence intervals of the 24-2 SS test. Translational Relevance Fast and consistent VF prediction from unsegmented OCT scans could become a solution for visual function estimation in patients unable to perform reliable VF exams.

[1]  Saman Sadeghi Afgeh,et al.  Predicting visual fields from optical coherence tomography via an ensemble of deep representation learners. , 2022, American journal of ophthalmology.

[2]  Matthew B. Blaschko,et al.  Convolutional neural network predicts visual field threshold values from optical coherence tomography scans , 2021 .

[3]  Jonghoon Shin,et al.  Visual Field Inference From Optical Coherence Tomography Using Deep Learning Algorithms: A Comparison Between Devices , 2021, Translational vision science & technology.

[4]  G. Wollstein,et al.  Estimating Global Visual Field Indices in Glaucoma by Combining Macula and Optic Disc OCT Scans Using 3-Dimensional Convolutional Neural Networks. , 2020, Ophthalmology. Glaucoma.

[5]  Jiwoong Lee,et al.  A deep learning approach to predict visual field using optical coherence tomography , 2020, PloS one.

[6]  K. Yamanishi,et al.  Deep learning model to predict visual field in central 10° from optical coherence tomography measurement in glaucoma , 2020, British Journal of Ophthalmology.

[7]  Jaime Fern'andez del R'io,et al.  Array programming with NumPy , 2020, Nature.

[8]  Felipe A Medeiros,et al.  Assessment of a Segmentation-Free Deep Learning Algorithm for Diagnosing Glaucoma From Optical Coherence Tomography Scans. , 2020, JAMA ophthalmology.

[9]  Felipe A. Medeiros,et al.  Artificial Intelligence Mapping of Structure to Function in Glaucoma , 2020, Translational vision science & technology.

[10]  Alexandre Hoang Thiery,et al.  Glaucoma management in the era of artificial intelligence , 2019, British Journal of Ophthalmology.

[11]  Robert N Weinreb,et al.  Deep Learning Approaches Predict Glaucomatous Visual Field Damage from OCT Optic Nerve Head En Face Images and Retinal Nerve Fiber Layer Thickness Maps. , 2019, Ophthalmology.

[12]  Ming Zhang,et al.  Overfitting remedy by sparsifying regularization on fully-connected layers of CNNs , 2019, Neurocomputing.

[13]  C. Leung Retinal Nerve Fiber Layer (RNFL) Optical Texture Analysis (ROTA) for Evaluation of RNFL Abnormalities in Glaucoma , 2018 .

[14]  Yi Yang,et al.  Random Erasing Data Augmentation , 2017, AAAI.

[15]  Milan Sonka,et al.  Optical Coherence Tomography Analysis Based Prediction of Humphrey 24-2 Visual Field Thresholds in Patients With Glaucoma , 2017, Investigative ophthalmology & visual science.

[16]  London,et al.  European Glaucoma Society Terminology and Guidelines for Glaucoma, 4th Edition - Part 1Supported by the EGS Foundation , 2017, British Journal of Ophthalmology.

[17]  François Chollet,et al.  Xception: Deep Learning with Depthwise Separable Convolutions , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[18]  F. Medeiros,et al.  A novel texture-based OCT enface image to detect and monitor glaucoma , 2016 .

[19]  D. Friedman,et al.  Primary open-angle glaucoma , 2016, Nature Reviews Disease Primers.

[20]  Martín Abadi,et al.  TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems , 2016, ArXiv.

[21]  J. Moreno-Montañés,et al.  Evaluation of Retinal nerve fiber layer thickness , mean deviation and visual field index in progressive glaucoma , 2015 .

[22]  Edem Tsikata,et al.  Patient characteristics associated with artifacts in Spectralis optical coherence tomography imaging of the retinal nerve fiber layer in glaucoma. , 2015, American journal of ophthalmology.

[23]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[24]  W. Swanson,et al.  Assessment of the reliability of standard automated perimetry in regions of glaucomatous damage. , 2014, Ophthalmology.

[25]  Sanjay Asrani,et al.  Artifacts in spectral-domain optical coherence tomography measurements in glaucoma. , 2014, JAMA ophthalmology.

[26]  Robert N Weinreb,et al.  The structure and function relationship in glaucoma: implications for detection of progression and measurement of rates of change. , 2012, Investigative ophthalmology & visual science.

[27]  W. Swanson,et al.  ‘Structure–function relationship’ in glaucoma: past thinking and current concepts , 2012, Clinical & experimental ophthalmology.

[28]  Robert N Weinreb,et al.  Structure-function Relationships Using the Cirrus Spectral Domain Optical Coherence Tomograph and Standard Automated Perimetry , 2012, Journal of glaucoma.

[29]  D. Hood,et al.  Deriving visual field loss based upon OCT of inner retinal thicknesses of the macula , 2011, Biomedical optics express.

[30]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[31]  Haogang Zhu,et al.  Predicting visual function from the measurements of retinal nerve fiber layer structure. , 2010, Investigative ophthalmology & visual science.

[32]  Fei-Fei Li,et al.  ImageNet: A large-scale hierarchical image database , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[33]  Paolo Fogagnolo,et al.  Mapping standard automated perimetry to the peripapillary retinal nerve fiber layer in glaucoma. , 2008, Investigative ophthalmology & visual science.

[34]  A Heijl,et al.  Practical recommendations for measuring rates of visual field change in glaucoma , 2008, British Journal of Ophthalmology.

[35]  Chris A Johnson,et al.  Evaluation of the structure-function relationship in glaucoma. , 2005, Investigative ophthalmology & visual science.

[36]  Yuko Ohno,et al.  Properties of perimetric threshold estimates from Full Threshold, SITA Standard, and SITA Fast strategies. , 2002, Investigative ophthalmology & visual science.

[37]  D. Garway-Heath,et al.  Mapping the visual field to the optic disc in normal tension glaucoma eyes. , 2000, Ophthalmology.

[38]  J L Keltner,et al.  Confirmation of visual field abnormalities in the Ocular Hypertension Treatment Study. Ocular Hypertension Treatment Study Group. , 2000, Archives of ophthalmology.

[39]  B. Bengtsson,et al.  False-negative responses in glaucoma perimetry: indicators of patient performance or test reliability? , 2000, American journal of ophthalmology.

[40]  H. Quigley,et al.  Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. , 2000, Investigative ophthalmology & visual science.

[41]  Douglas R. Anderson,et al.  Clinical Decisions In Glaucoma , 1993 .

[42]  W. Kruskal,et al.  Use of Ranks in One-Criterion Variance Analysis , 1952 .

[43]  S. Mansberger,et al.  Primary Open-Angle Glaucoma Preferred Practice Pattern(®) Guidelines. , 2016, Ophthalmology.

[44]  C. Phelps,et al.  Visual Fields in Low-Tension Glaucoma, Primary Open Angle Glaucoma, and Anterior Ischemic Optic Neuropathy , 1983 .